光伏發(fā)電系統(tǒng)改進型最大功率跟蹤算法的研究與應用
[Abstract]:Energy is not only the foundation of social development, but also the driving force of economic construction. The unique zero pollution and inexhaustible characteristics of solar energy make it the most ideal clean energy in the world, and solar energy is used to generate electricity is one of the most important uses. The research on photovoltaic power generation system not only provides an effective solution for the sustainable use of energy and environmental protection, but also has an important strategic significance for the stable development of society. The use of maximum power tracking control technology is an effective way to improve the efficiency of photovoltaic power generation system, which has an important impact on photovoltaic power generation industry, and is also a research hotspot in this field. In this paper, photovoltaic power generation system as the research object, aiming at the maximum power tracking problem, the main contents are: 1. According to the equivalent circuit of photovoltaic cell, the mathematical model of photovoltaic cell is deduced, and the model of photovoltaic cell and the simulation platform of the whole photovoltaic system are built by using Matlab/Simulink. The V-I output characteristics of photovoltaic cells are simulated by using the built simulation platform, and the traditional duty cycle disturbance observation method is analyzed and simulated. 2. In this paper, the measurement error of the training data in maximum power point tracking using BP neural network is analyzed. It is pointed out that the accuracy of BP neural network (LS-NN) MPPT algorithm based on least squares depends heavily on the accuracy of training data, and a BP neural network (QLS-NN) MPPT algorithm based on quasi least squares neural network is proposed. The prediction results of two different algorithms are compared by simulation analysis and experimental test. 3. 3. The method of maximum power tracking based on impedance matching principle is also studied in this paper. Based on the theoretical analysis of the traditional impedance matching MPPT algorithm, it is found that the traditional impedance matching MPPT algorithm is sensitive to the system parameters, and an improved dynamic impedance matching MPPT algorithm is proposed. The improved dynamic impedance matching MPPT algorithm proposed in this paper can effectively improve the performance of photovoltaic power generation system through the comparison of simulation and experiment. In this study, the BP neural network MPPT algorithm based on quasi least squares is used to reduce the influence of training samples with measurement error on the prediction of maximum power using neural network, and the robustness of the system is improved. The MPPT algorithm based on improved dynamic impedance matching can effectively solve the problem that the system parameters are set more and the output power is greatly affected by the load for the traditional impedance matching MPPT algorithm. It provides a reference for improving the overall efficiency and stability of photovoltaic power generation system.
【學位授予單位】:溫州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM615;TP183
【參考文獻】
相關期刊論文 前10條
1 ;2030年前全球太陽能光伏發(fā)電能力將強勁增長[J];石油化工應用;2016年09期
2 馬慶強;;我國光伏產業(yè)發(fā)展的現(xiàn)狀、問題及國際經驗借鑒[J];上海經濟;2016年04期
3 聶曉華;賴家俊;;復雜應用環(huán)境下粒子群光伏MPPT控制方法[J];電力電子技術;2016年01期
4 丁天啟;谷彩連;;基于定步長擾動觀察法的光伏電池最大功率點跟蹤仿真[J];沈陽工程學院學報(自然科學版);2016年01期
5 高金輝;李國成;;一種開路電壓和短路電流相結合的MPPT算法研究[J];電力系統(tǒng)保護與控制;2015年24期
6 韓麗;尚儀;史麗萍;;基于在線自調整神經網絡的最大功率跟蹤方法研究[J];太陽能學報;2015年08期
7 董秀成;皮光林;;能源地緣政治與中國能源戰(zhàn)略[J];經濟問題;2015年02期
8 張夢潔;;英國將成為歐洲太陽能光伏市場新領頭羊[J];能源研究與利用;2014年04期
9 袁曉玲;施俊華;徐杰彥;;計及天氣類型指數(shù)的光伏發(fā)電短期出力預測[J];中國電機工程學報;2013年34期
10 何耀耀;許啟發(fā);楊善林;余本功;;基于RBF神經網絡分位數(shù)回歸的電力負荷概率密度預測方法[J];中國電機工程學報;2013年01期
相關會議論文 前1條
1 傅望;郭珂;周林;;光伏電池工程用數(shù)學模型研究[A];重慶市電機工程學會2010年學術會議論文集[C];2010年
相關博士學位論文 前2條
1 張正江;過程系統(tǒng)的數(shù)據校正與參數(shù)估計[D];浙江大學;2010年
2 張超;光伏并網發(fā)電系統(tǒng)MPPT及孤島檢測新技術的研究[D];浙江大學;2006年
相關碩士學位論文 前6條
1 呂盛華;基于光伏陣列拓撲的全局最大功率跟蹤算法研究[D];太原理工大學;2016年
2 李帥;基于BP神經網絡的光伏列陣MPPT控制研究[D];東北電力大學;2016年
3 陳建龍;電動汽車的雙向DC-DC變換器的研究[D];哈爾濱工業(yè)大學;2015年
4 劉國勝;基于偏差調節(jié)的最大功率點跟蹤技術比較研究[D];燕山大學;2014年
5 王廈楠;獨立光伏發(fā)電系統(tǒng)及其MPPT的研究[D];南京航空航天大學;2008年
6 郭熠;電動汽車雙向DC/DC變換器的研究[D];天津大學;2004年
,本文編號:2414896
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2414896.html