基于圖像處理的汽車車道偏離預警系統(tǒng)研究與實現(xiàn)
[Abstract]:With the rapid development of social economy, people's living standard is improving gradually, and the number of cars is also increasing rapidly. With the increase of the number of cars, the traffic environment is getting worse and worse, which not only makes the traffic jam, but also brings more traffic accidents. In order to reduce the occurrence of traffic accidents, some researchers put forward the idea of Intelligent Transportation system (its), and the driveway deviation early warning system is the core of its. The lane deviation warning system is a system that detects the current vehicle position by detecting the road image collected by the camera. If the vehicle is in the driveway deviation state, it sends out an early warning signal to remind the driver to drive safely. Through the simple research and analysis of the existing driveway deviation warning system at home and abroad, this paper determines the research content of this paper, which is mainly divided into three modules, that is, image preprocessing module. The main research contents and contributions of this paper are as follows: 1. The corresponding preprocessing steps of the original road image captured by the camera include grayscale road image. The road image is enhanced by filtering and edge detection of road image. Several different image preprocessing algorithms are compared and analyzed. According to the actual needs of road image, the appropriate processing method is selected. The line model is selected as the lane line model in this paper. By analyzing several classical line detection methods and comparing their advantages and disadvantages, Hough transform is selected to detect the lane line in the road image. 2. In the course of lane line detection, a method of lane line detection based on Hough transform and grayscale block matching is proposed. After Hough transform, many straight lines are detected, and then the obvious difference between road gray and lane gray is used. The grayscale block matching is carried out to determine the true left and right lane lines in many straight lines, and the lane line is tracked in real time by using Kalman filter. 3. Several classical lane deviation warning models are briefly analyzed. According to the actual situation of this paper, a lane deviation model based on lane deviation rate combined with the number of straight lines is proposed. Firstly, the lane deviation rate is calculated according to the angle of the left and right lane lines. On this basis, the condition of judging the number of detection lines is added, so that the current state of the vehicle can be accurately judged, so as to meet the functional requirements of accurate warning system, and the deviation of vehicles under different scenes is analyzed through specific experiments. Through a large number of experiments and analysis of experimental results, the lane line detection method and lane deviation warning method used in this paper have a good effect, and the developed lane deviation warning system is effective.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41;TP277
【相似文獻】
相關(guān)期刊論文 前10條
1 吳晴;田炳香;鄭榜貴;;一種用于高速公路的快速有效的車道線識別算法[J];計算機測量與控制;2008年11期
2 田炳香;鄭榜貴;吳晴;;高速公路車道線檢測與跟蹤算法研究[J];現(xiàn)代電子技術(shù);2008年09期
3 葉慶;趙明輝;李菲;孫曉泉;;夜間車道線檢測與跟蹤算法研究[J];現(xiàn)代電子技術(shù);2009年13期
4 余厚云;張為公;;直線模型下的車道線跟蹤與車道偏離檢測[J];自動化儀表;2009年11期
5 余厚云;張為公;;基于動態(tài)感興趣區(qū)域的車道線識別與跟蹤[J];工業(yè)儀表與自動化裝置;2009年05期
6 劉富強;張姍姍;朱文紅;李志鵬;;一種基于視覺的車道線檢測與跟蹤算法[J];同濟大學學報(自然科學版);2010年02期
7 胡慶新;吳林成;顧愛華;;高速公路中搜索車道線的方法[J];微計算機信息;2010年22期
8 高德芝;段建民;楊磊;楊喜寧;;應用多階動態(tài)規(guī)劃的車道線識別方法[J];機械工程學報;2011年08期
9 楊晶東;楊敬輝;樸松昊;;一種有效的車道線識別與偏道預警方法[J];控制工程;2011年02期
10 徐后杰;李會方;繆國鋒;;基于單目視覺的車道線分離警告算法研究[J];微處理機;2011年03期
相關(guān)會議論文 前8條
1 畢雁冰;;提高車道線識別精度的一種方法[A];第三屆中國CAE工程分析技術(shù)年會論文集[C];2007年
2 楊廣林;苗冬霜;;結(jié)構(gòu)化道路車道線檢測與跟蹤算法[A];2005年全國理論計算機科學學術(shù)年會論文集[C];2005年
3 劉曉龍;鄧志東;;基于全局與局部模型相互制約及具有模型不確定性評估的車道線檢測方法[A];2013年中國智能自動化學術(shù)會議論文集(第三分冊)[C];2013年
4 張潔穎;王生進;丁曉青;;基于車輛軌跡的車道線檢測與劃分[A];圖像圖形技術(shù)與應用進展——第三屆圖像圖形技術(shù)與應用學術(shù)會議論文集[C];2008年
5 余貴珍;李芹;王迪;;車輛智能化車道線跟蹤方法研究[A];第八屆中國智能交通年會優(yōu)秀論文集——智能交通與安全[C];2013年
6 李鋼;圣華;張仁斌;;基于LMedSquare選取最佳子集的車道線檢測算法[A];2009全國虛擬儀器大會論文集(二)[C];2009年
7 劉天輝;李飛;;車輛視覺導航中道路檢測算法研究[A];第十一屆沈陽科學學術(shù)年會暨中國汽車產(chǎn)業(yè)集聚區(qū)發(fā)展與合作論壇論文集(信息科學與工程技術(shù)分冊)[C];2014年
8 孫曉軍;李華;;基于Facet模型的一種車道線提取方法[A];第八屆中國智能交通年會論文集[C];2013年
相關(guān)博士學位論文 前7條
1 杜明芳;基于視覺的自主車道路環(huán)境理解技術(shù)研究[D];北京理工大學;2015年
2 王俊;無人駕駛車輛環(huán)境感知系統(tǒng)關(guān)鍵技術(shù)研究[D];中國科學技術(shù)大學;2016年
3 穆柯楠;基于車—路視覺協(xié)同的行車環(huán)境感知方法研究[D];長安大學;2016年
4 王超;面向智能車輛的單目視覺行車安全信息檢測與識別方法研究[D];南京理工大學;2016年
5 陳軍;基于DSP的高速公路車道偏離報警系統(tǒng)研究[D];天津大學;2010年
6 沈\,
本文編號:2406291
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2406291.html