天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

卷積神經(jīng)網(wǎng)絡(luò)特征重要性分析及增強(qiáng)特征選擇模型

發(fā)布時(shí)間:2018-06-21 14:30

  本文選題:卷積神經(jīng)網(wǎng)絡(luò) + 特征重要性分析; 參考:《軟件學(xué)報(bào)》2017年11期


【摘要】:卷積神經(jīng)網(wǎng)絡(luò)等深度神經(jīng)網(wǎng)絡(luò)憑借著其強(qiáng)大的表達(dá)能力、突出的分類性能,已在不同領(lǐng)域內(nèi)得到了廣泛應(yīng)用.當(dāng)面對(duì)高維特征時(shí),深度神經(jīng)網(wǎng)絡(luò)通常被認(rèn)為具有較好的魯棒性,能夠隱含地對(duì)特征進(jìn)行選擇,但由于網(wǎng)絡(luò)參數(shù)巨大,如果數(shù)據(jù)量達(dá)不到足夠的規(guī)模,則會(huì)導(dǎo)致學(xué)習(xí)不充分,因而可能無法達(dá)到最優(yōu)的特征選擇.而神經(jīng)網(wǎng)絡(luò)的黑箱特性使得無法觀測(cè)神經(jīng)網(wǎng)絡(luò)選擇了哪些特征,也無法評(píng)估其特征選擇的能力.為此,以卷積神經(jīng)網(wǎng)絡(luò)為例,首先研究如何顯式地表達(dá)神經(jīng)網(wǎng)絡(luò)中的特征重要性,提出了基于感受野的特征貢獻(xiàn)度分析方法;其次,將神經(jīng)網(wǎng)絡(luò)特征選擇與傳統(tǒng)特征評(píng)價(jià)方法進(jìn)行對(duì)比分析發(fā)現(xiàn),在非海量樣本的情況下,傳統(tǒng)特征評(píng)價(jià)方法對(duì)高重要性特征和噪聲特征的識(shí)別能力反而能夠超過神經(jīng)網(wǎng)絡(luò).因此,進(jìn)一步地提出了卷積神經(jīng)網(wǎng)絡(luò)增強(qiáng)特征選擇模型,將傳統(tǒng)特征評(píng)價(jià)方法對(duì)特征重要性的理解結(jié)合到神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過程中,以輔助深度神經(jīng)網(wǎng)絡(luò)進(jìn)行特征選擇.在基于文本的社交媒體用戶屬性建模任務(wù)下進(jìn)行了對(duì)比實(shí)驗(yàn),結(jié)果驗(yàn)證了該模型的有效性.
[Abstract]:Convolutional neural networks such as depth neural networks have been widely used in different fields because of their strong expressive ability and outstanding classification performance. When faced with high dimensional features, deep neural networks are generally considered to be robust and can implicitly select features. However, because of the huge network parameters, if the amount of data does not reach enough scale, it will lead to inadequate learning. As a result, it may not be possible to achieve optimal feature selection. The black box characteristics of the neural network make it impossible to observe which features the neural network has selected and to evaluate its ability of feature selection. For this reason, taking convolutional neural networks as an example, this paper studies how to express the importance of features in neural networks explicitly, and puts forward a method of feature contribution analysis based on receptive field. By comparing neural network feature selection with traditional feature evaluation method, it is found that in the case of non-massive samples, the recognition ability of traditional feature evaluation method for high-importance features and noise features is higher than that of neural network. Therefore, an enhanced feature selection model based on convolutional neural networks is proposed. The traditional feature evaluation method is combined with the understanding of the importance of features in the learning process of the neural network, and the feature selection is carried out with the help of the depth neural network. The effectiveness of the model is verified by a comparative experiment under the task of text-based social media user attribute modeling.
【作者單位】: 清華大學(xué)智能技術(shù)與系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室;清華大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)系;
【分類號(hào)】:TP183

【相似文獻(xiàn)】

相關(guān)會(huì)議論文 前10條

1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];1996年

2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國(guó)智能自動(dòng)化會(huì)議論文集(上冊(cè))[C];2003年

3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡(jiǎn)單規(guī)劃的識(shí)別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年

4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國(guó)神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

5 鐘義信;;知識(shí)論:神經(jīng)網(wǎng)絡(luò)的新機(jī)遇——紀(jì)念中國(guó)神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國(guó)神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

6 許進(jìn);保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國(guó)神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預(yù)報(bào)產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預(yù)報(bào)應(yīng)用[A];1999年中國(guó)神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學(xué)生創(chuàng)造力評(píng)估中的應(yīng)用[A];第十二屆全國(guó)心理學(xué)學(xué)術(shù)大會(huì)論文摘要集[C];2009年

9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第七分冊(cè))[南京理工大學(xué)學(xué)報(bào)(增刊)][C];2009年

10 張廣遠(yuǎn);萬強(qiáng);曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國(guó)設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2010年

相關(guān)重要報(bào)紙文章 前10條

1 美國(guó)明尼蘇達(dá)大學(xué)社會(huì)學(xué)博士 密西西比州立大學(xué)國(guó)家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護(hù)好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國(guó)教師報(bào);2014年

2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計(jì)算機(jī)世界;2001年

3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國(guó)紡織報(bào);2003年

4 中國(guó)科技大學(xué)計(jì)算機(jī)系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計(jì)算機(jī)世界;2003年

5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復(fù)雜工藝“黑箱”[N];解放日?qǐng)?bào);2007年

6 本報(bào)記者 劉霞;美用DNA制造出首個(gè)人造神經(jīng)網(wǎng)絡(luò)[N];科技日?qǐng)?bào);2011年

7 健康時(shí)報(bào)特約記者  張獻(xiàn)懷;干細(xì)胞移植:修復(fù)受損的神經(jīng)網(wǎng)絡(luò)[N];健康時(shí)報(bào);2006年

8 劉力;我半導(dǎo)體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達(dá)國(guó)際先進(jìn)水平[N];中國(guó)電子報(bào);2001年

9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導(dǎo)報(bào);2002年

10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國(guó)船舶報(bào);2006年

相關(guān)博士學(xué)位論文 前10條

1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學(xué);2004年

2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學(xué);2015年

3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時(shí)滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學(xué);2014年

4 王新迎;基于隨機(jī)映射神經(jīng)網(wǎng)絡(luò)的多元時(shí)間序列預(yù)測(cè)方法研究[D];大連理工大學(xué);2015年

5 付愛民;極速學(xué)習(xí)機(jī)的訓(xùn)練殘差、穩(wěn)定性及泛化能力研究[D];中國(guó)農(nóng)業(yè)大學(xué);2015年

6 李輝;基于粒計(jì)算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國(guó)礦業(yè)大學(xué);2015年

7 王衛(wèi)蘋;復(fù)雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學(xué);2015年

8 張海軍;基于云計(jì)算的神經(jīng)網(wǎng)絡(luò)并行實(shí)現(xiàn)及其學(xué)習(xí)方法研究[D];華南理工大學(xué);2015年

9 李艷晴;風(fēng)速時(shí)間序列預(yù)測(cè)算法研究[D];北京科技大學(xué);2016年

10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡(luò)與高校效益預(yù)測(cè)的研究[D];華南理工大學(xué);2015年

2 賈文靜;基于改進(jìn)型神經(jīng)網(wǎng)絡(luò)的風(fēng)力發(fā)電系統(tǒng)預(yù)測(cè)及控制研究[D];燕山大學(xué);2015年

3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學(xué);2015年

4 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學(xué);2015年

5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡(luò)研究[D];西南大學(xué);2015年

6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡(luò)的遙感圖像分類研究[D];昆明理工大學(xué);2015年

7 李志杰;基于神經(jīng)網(wǎng)絡(luò)的上證指數(shù)預(yù)測(cè)研究[D];華南理工大學(xué);2015年

8 陳少吉;基于神經(jīng)網(wǎng)絡(luò)血壓預(yù)測(cè)研究與系統(tǒng)實(shí)現(xiàn)[D];華南理工大學(xué);2015年

9 張韜;幾類時(shí)滯神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[D];渤海大學(xué);2015年

10 邵雪瑩;幾類時(shí)滯不確定神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];渤海大學(xué);2015年

,

本文編號(hào):2049044

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2049044.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶092b9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com