基于微振動(dòng)自取能技術(shù)的隧道環(huán)境信息采集與關(guān)鍵技術(shù)研究
本文選題:壓電發(fā)電 + 無(wú)線傳感網(wǎng)絡(luò)(WSN)��; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:改革開(kāi)放以來(lái),經(jīng)濟(jì)的騰飛促進(jìn)了我國(guó)的高速公路隧道建設(shè),便利的交通提高了生活品質(zhì),但隨著交通公路里程的快速增長(zhǎng),高速公路隧道的管理與檢測(cè)也面臨著嚴(yán)峻挑戰(zhàn)。高速公路隧道數(shù)量增多,事故發(fā)生率也隨之增高,為了解決該難題,必須對(duì)高速公路隧道進(jìn)行實(shí)況檢測(cè),加強(qiáng)對(duì)高速公路隧道的管理。隧道環(huán)境信息主要有溫度、濕度、照度、噪聲、一氧化碳濃度、風(fēng)速和煙霧濃度等,本文主要研究溫濕度,由于基于微振動(dòng)自取能技術(shù),所以隧道環(huán)境信息還需要包括振動(dòng)情況。隨著集成電路、MEMS和傳感器技術(shù)的發(fā)展,無(wú)線傳感器網(wǎng)絡(luò)(Wireless Sensor Network,WSN)在監(jiān)控領(lǐng)域得到廣泛應(yīng)用,同時(shí)在高速隧道檢測(cè)中的應(yīng)用也隨之增多。WSN中傳感器節(jié)點(diǎn)能量來(lái)源主要依靠自身攜帶的電池,目前節(jié)點(diǎn)使用的電池主要為化學(xué)電池,化學(xué)電池存在很多缺陷,例如體積笨重、供能時(shí)間短需要定期對(duì)節(jié)點(diǎn)電池進(jìn)行維護(hù),后期維護(hù)成本高,最重要的是化學(xué)電池會(huì)對(duì)環(huán)境造成嚴(yán)重污染,對(duì)廢舊電池的專業(yè)處理也會(huì)耗費(fèi)大量資源。對(duì)于經(jīng)常部署在對(duì)人體有害的惡劣環(huán)境和不易維護(hù)的場(chǎng)所中的監(jiān)測(cè)網(wǎng)絡(luò)來(lái)說(shuō),化學(xué)電池的缺陷更加明顯。因而振動(dòng)能量回收技術(shù)引起人們的廣泛關(guān)注,其中獲取電能有效的方式包括電磁式、壓電式和靜電式。特別是,壓電發(fā)電由于結(jié)構(gòu)簡(jiǎn)單、發(fā)電量相對(duì)較高、不發(fā)熱等優(yōu)點(diǎn)引起人們的極大研究興趣。目前,壓電發(fā)電技術(shù)在發(fā)電能力上已有很大改善,但在提高發(fā)電質(zhì)量的方面還有改進(jìn)空間。本文針對(duì)傳統(tǒng)多層發(fā)電結(jié)構(gòu)的局限性,基于壓電發(fā)電相關(guān)知識(shí)建立懸臂梁式壓電振子發(fā)電的數(shù)學(xué)模型,設(shè)計(jì)了多層懸臂梁和復(fù)合懸臂梁發(fā)電裝置,并基于ANSYS Workbench 15.0有限元分析軟件建立相應(yīng)的有限元模型,通過(guò)對(duì)這兩個(gè)裝置的靜力學(xué)、模態(tài)、諧響應(yīng)、瞬態(tài)動(dòng)力學(xué)、ACT壓電分析,發(fā)現(xiàn),復(fù)合懸臂梁結(jié)構(gòu)的發(fā)電裝置在保證發(fā)電量的前提下,由多層懸臂梁結(jié)構(gòu)的共振點(diǎn)拓寬為一個(gè)共振頻帶。設(shè)計(jì)了一套基于壓電自取能技術(shù)發(fā)電的隧道環(huán)境信息檢測(cè)系統(tǒng)。運(yùn)用LTC3588和LTC4071搭建能量收集和儲(chǔ)存系統(tǒng),克服了電池供電的缺陷,保障監(jiān)測(cè)設(shè)備的可靠運(yùn)行。運(yùn)用由MSP430F149和MSP430G2553微控制器以及APC240無(wú)線傳輸模塊搭建的監(jiān)測(cè)系統(tǒng),結(jié)合數(shù)據(jù)傳輸網(wǎng)絡(luò)和計(jì)算機(jī)支持中心,利用低功耗監(jiān)測(cè)裝置對(duì)隧道環(huán)境信息進(jìn)行科學(xué)的監(jiān)測(cè)和管理。
[Abstract]:Since the reform and opening up, the rapid development of economy has promoted the construction of highway tunnels in China, and the convenient traffic has improved the quality of life. However, with the rapid growth of highway mileage, the management and detection of highway tunnels are also facing severe challenges. In order to solve the problem, it is necessary to carry out live inspection of highway tunnel and strengthen the management of highway tunnel. The environmental information of tunnel mainly includes temperature, humidity, illumination, noise, carbon monoxide concentration, wind speed and smoke concentration, etc. Therefore, the tunnel environment information also needs to include vibration. With the development of integrated circuit MEMS and sensor technology, Wireless Sensor Network (WSNs) has been widely used in the field of monitoring. At the same time, the application in high-speed tunnel detection also increases. WSN sensor node energy source mainly depends on the battery carried by itself. At present, the battery used in the node is mainly chemical battery, chemical battery has many defects, such as bulky size. The short energy supply time needs to maintain the node battery periodically, and the later maintenance cost is high. The most important thing is that the chemical battery will cause serious pollution to the environment, and the professional treatment of the waste battery will also consume a lot of resources. For monitoring networks that are often deployed in hazardous environments and difficult to maintain, the defects of chemical batteries are even more pronounced. Therefore, vibration energy recovery technology has attracted wide attention, among which the effective ways of obtaining electric energy include electromagnetic, piezoelectric and electrostatic. In particular, piezoelectric power generation has attracted great interest because of its simple structure, relatively high power generation and no heating. At present, piezoelectric power generation technology has been greatly improved in power generation capacity, but there is room for improvement in power generation quality. Aiming at the limitation of traditional multi-layer power generation structure, the mathematical model of cantilever piezoelectric oscillator is established based on the knowledge of piezoelectric power generation, and the multi-layer cantilever beam and composite cantilever beam generator are designed. Based on ANSYS Workbench 15.0 finite element analysis software, the corresponding finite element model is established. By analyzing the static, modal, harmonic response and transient dynamics of the two devices, it is found that, The power generation device with composite cantilever beam structure is extended from the common vibration point of the multi-layer cantilever beam structure to a resonance frequency band on the premise of ensuring the power generation. A tunnel environmental information detection system based on piezoelectric energy generation technology is designed. LTC3588 and LTC4071 are used to build energy collection and storage system, which overcomes the defect of battery power supply and ensures the reliable operation of monitoring equipment. A monitoring system based on MSP430F149, MSP430G2553 microcontroller and APC240 wireless transmission module is used to scientifically monitor and manage tunnel environmental information by using low power consumption monitoring device, combining with data transmission network and computer support center.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP274.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 馬宗正;王新莉;;基于溫差發(fā)電技術(shù)的發(fā)動(dòng)機(jī)能量回收研究[J];電源技術(shù);2014年10期
2 龔俊杰;阮志林;李康超;邊義祥;;新型多層懸臂梁壓電發(fā)電裝置發(fā)電性能研究[J];機(jī)械工程學(xué)報(bào);2014年05期
3 孟慶春;陳光柱;;自供電無(wú)線傳感網(wǎng)絡(luò)節(jié)點(diǎn)設(shè)計(jì)[J];儀表技術(shù)與傳感器;2012年07期
4 闞君武;唐可洪;任玉;邵承會(huì);楊志剛;;壓電單晶梁發(fā)電機(jī)的能量效率(英文)[J];光學(xué)精密工程;2008年12期
5 季宏麗;馬勇;裘進(jìn)浩;姜皓;沈輝;朱孔軍;;高效壓電能量回收系統(tǒng)的優(yōu)化設(shè)計(jì)(英文)[J];光學(xué)精密工程;2008年12期
6 齊洪東;楊濤;岳高銘;韓賓;胡莉;;微型壓電陶瓷振動(dòng)發(fā)電技術(shù)研究綜述[J];傳感器與微系統(tǒng);2007年05期
7 方科;李欣欣;楊志剛;程光明;闞君武;;壓電式能量獲取裝置的研究現(xiàn)狀[J];傳感器與微系統(tǒng);2006年10期
8 曾平;溫建明;程光明;吳博達(dá);楊志剛;;新型慣性式壓電驅(qū)動(dòng)機(jī)構(gòu)的研究[J];光學(xué)精密工程;2006年04期
9 姜德義,鄭拯宇,李林,任松;壓電陶瓷片耦合振動(dòng)模態(tài)的ANSYS模擬分析[J];傳感技術(shù)學(xué)報(bào);2003年04期
,本文編號(hào):2043492
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2043492.html