基于Cat映射的多目標貓群優(yōu)化算法及其應用
本文選題:貓群優(yōu)化算法 + 進化多目標優(yōu)化算法。 參考:《蘭州大學》2017年碩士論文
【摘要】:在生活實踐和科學研究的實際情況中,許多問題都是具備很大挑戰(zhàn)和難度且包含多個優(yōu)化目標的多目標優(yōu)化問題(Multi-objective Optimization Problem,MOP)。因為實際需求,多個目標的優(yōu)化課題吸引了國內外許多研究者的目光,并逐漸變成優(yōu)化領域的重點鉆研課題。進化多目標算法在求解包含多個目標的優(yōu)化問題時,不但實現(xiàn)簡單而且效率較高。本文主要介紹一種比較新的進化算法,即貓群算法(Cat Swarm Optimization,CSO),并對它進行改進并擴展到多目標領域,最后用它優(yōu)化包含多個目標的問題。CSO算法的理論模型是模仿貓的行為方式創(chuàng)建的,其原理簡單易實現(xiàn),收斂速度較快,算法穩(wěn)定性較好,已被應用于圖像處理、神經(jīng)網(wǎng)絡訓練和模式識別等領域并取得了很好的效果。但是由于CSO是近些年提出的,所以理論分析和實踐應用方面都需要進行更深入的研究。本文在CSO中引入了精英策略,并將其擴展為多目標,最后用它優(yōu)化一種簡單的改進模型的脈沖耦合神經(jīng)網(wǎng)絡(Pulse-Coupled Neural Network,PCNN)參數(shù)實現(xiàn)圖像分割。具體的研究工作和創(chuàng)新點如下:1、提出了一種新的進化多目標優(yōu)化算法:基于Cat映射的非隨的多目標貓群優(yōu)化算法(Non-Random Multi-Objective Cat Swarm Optimization Algorithm Based on Cat Map,NRC-MOCSO)。針對CSO算法在迭代后期極易陷入局部最優(yōu)和收斂速度緩慢的缺點,本文對CSO做了一點改進,讓種群中的貓非隨機的進入搜索模式和跟蹤模式。再者,針對CSO算法在初始化階段種群分布不均勻而導致算法不穩(wěn)定性的弊端,本文利用混沌映射對種群進行初始化,將非隨機的CSO與混沌相結合,并將其擴展到多目標領域。2、本文使用提出的NRC-MOCSO算法自動優(yōu)化一種簡單改進模型PCNN(ISPCNN)的參數(shù)。首次實現(xiàn)了多目標貓群算法自動優(yōu)化ISPCNN模型參數(shù)。在仿真實驗中用以熵為適應度函數(shù)的CSO和粒子群優(yōu)化算法(Particle Swarm Optimization,PSO)、連通性為適應度函數(shù)的CSO和PSO、熵與連通性為適應度函數(shù)的兩個目標的多目標粒子群優(yōu)化算法(Multi-Objective Particle Swarm Optimization,MOPSO)和NRC-MOCSO六種方法優(yōu)化ISPCNN參數(shù),用優(yōu)化后的ISPCNN對五幅經(jīng)典的圖片進行分割實驗。結果證明:適應度函數(shù)對算法性能有很大的影響;針對于應用問題多目標比單目標更具優(yōu)勢,能夠綜合考慮多方面的影響因素。
[Abstract]:In the practical situation of life practice and scientific research, many problems are multi-objective optimization problem with great challenge and difficulty and multi-objective optimization problem. Because of the actual demand, the multi-objective optimization project has attracted the attention of many researchers at home and abroad, and has gradually become an important research topic in the field of optimization. Evolutionary multiobjective algorithm is simple and efficient in solving optimization problems with multiple objectives. This paper mainly introduces a new evolutionary algorithm, Cat swarm optimization, and extends it to the multi-objective field. Finally, the theoretical model of CSO algorithm with multiple targets is created by imitating the behavior of cats. Its principle is simple and easy to realize, the convergence speed is faster, the algorithm is stable, and has been applied to image processing. Neural network training and pattern recognition have achieved good results. However, since CSO is proposed in recent years, theoretical analysis and practical applications need to be further studied. In this paper, elite strategy is introduced into CSO and extended to multi-objective. Finally, an improved impulse-coupled neural network named Pulse-Coupled Neural Network (PNN) is used to realize image segmentation. The specific research and innovation points are as follows: 1. A new evolutionary multi-objective optimization algorithm is proposed: Non-Random Multi-Objective Cat Optimization Algorithm based on Cat Map and Non-Random Multi-Objective Cat Optimization algorithm based on NRC-MOCSOO. In view of the shortcomings of CSO algorithm which is easy to fall into local optimum and slow convergence rate in the late iteration this paper makes some improvements to CSO so that the cats in the population can enter the search mode and the tracking mode non-randomly. Furthermore, in order to solve the problem that the population distribution of CSO algorithm is not uniform in initialization stage, the chaotic mapping is used to initialize the population, and the non-random CSO is combined with chaos. In this paper, the proposed NRC-MOCSO algorithm is used to automatically optimize the parameters of a simple improved model PCNNCMOCSO. The automatic optimization of ISPCNN model parameters based on multi-objective cat swarm algorithm is realized for the first time. Multi-Objective Particle Optimization algorithm for CSO and PSO with entropy as fitness function, CSO and PSO with connectivity as fitness function and multi-objective particle swarm optimization algorithm with entropy and connectivity as fitness function in simulation experiments Swarm Optimization / MOPSO) and NRC-MOCSO are used to optimize ISPCNN parameters. Five classic images are segmented by optimized ISPCNN. The results show that the fitness function has a great influence on the performance of the algorithm, and that the multi-objective is more advantageous than the single objective in the application of the problem, so it can comprehensively consider many factors affecting the performance of the algorithm.
【學位授予單位】:蘭州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP18
【參考文獻】
相關期刊論文 前10條
1 馬海榮;程新文;;基于灰度相關性的改進PCNN圖像自動分割算法[J];微電子學與計算機;2014年11期
2 吳駿;孫明明;肖志濤;張芳;耿磊;;聯(lián)合蟻群算法和PCNN的腦部MRI圖像分割方法[J];光電子.激光;2014年03期
3 劉麗;徐浩;陳瑞生;;改進的遺傳算法在PCNN參數(shù)標定中的應用[J];機械制造;2013年05期
4 李麗;徐坤;;基于PCNN和粒子群算法的圖像自動分割方法研究[J];機電產品開發(fā)與創(chuàng)新;2011年01期
5 魏偉一;李戰(zhàn)明;;基于改進PCNN和互信息熵的自動圖像分割[J];計算機工程;2010年13期
6 田東平;;基于Tent混沌序列的粒子群優(yōu)化算法[J];計算機工程;2010年04期
7 張詣;;Logistic混沌映射[J];電腦知識與技術;2008年35期
8 顧曉東;張立明;余道衡;;用無需選取參數(shù)的Unit-linking PCNN進行自動圖像分割[J];電路與系統(tǒng)學報;2007年06期
9 高鷹;謝勝利;;混沌粒子群優(yōu)化算法[J];計算機科學;2004年08期
10 謝濤,陳火旺,康立山;多目標優(yōu)化的演化算法[J];計算機學報;2003年08期
相關博士學位論文 前1條
1 陳昱蒞;基于參數(shù)自動設置的簡化PCNN模型(SPCNN)的圖像分割及其在目標識別上的應用[D];蘭州大學;2011年
相關碩士學位論文 前5條
1 徐永彬;基于粒子群算法與PCNN的圖像分割研究[D];云南大學;2015年
2 高明俊;基于智能計算和PCNN的圖像處理與檢索識別技術研究[D];山東財經(jīng)大學;2012年
3 時麗娜;進化多目標優(yōu)化算法及其應用研究[D];廣西師范大學;2010年
4 王魯;基于遺傳算法的多目標優(yōu)化算法研究[D];武漢理工大學;2006年
5 張敏慧;改進的粒子群計算智能算法及其多目標優(yōu)化的應用研究[D];浙江大學;2005年
,本文編號:2039843
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2039843.html