基于模型預(yù)測(cè)控制的氣浮臺(tái)運(yùn)動(dòng)控制研究
本文選題:氣浮臺(tái) + 運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)。 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:氣浮臺(tái)作為一種借助平面型氣浮軸承在一個(gè)平面上實(shí)現(xiàn)幾乎無(wú)摩擦運(yùn)動(dòng)的航天器地面模擬裝置,以其成本相對(duì)較低、持續(xù)時(shí)間較長(zhǎng)、引入擾動(dòng)較小等優(yōu)點(diǎn)在近幾十年發(fā)展迅速,被廣泛應(yīng)用于控制靈活機(jī)械手、機(jī)械手硬件測(cè)試、自由飛行的衛(wèi)星機(jī)械手系統(tǒng)、衛(wèi)星編隊(duì)飛行與臨近操作、交會(huì)對(duì)接(捕捉)、低重力機(jī)構(gòu)登陸裝置等主題的航天任務(wù)研究中。作為這些研究的基礎(chǔ),首先要實(shí)現(xiàn)對(duì)氣浮臺(tái)的運(yùn)動(dòng)控制。本文以一種3自由度氣浮臺(tái)為研究對(duì)象,詳細(xì)介紹氣浮臺(tái)運(yùn)動(dòng)控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)過(guò)程,并嘗試采用模型預(yù)測(cè)控制器進(jìn)行控制。首先介紹氣浮臺(tái)的基本組成與關(guān)鍵參數(shù)。根據(jù)理論力學(xué)的相關(guān)知識(shí),建立慣性坐標(biāo)系與體坐標(biāo)系,對(duì)氣浮臺(tái)進(jìn)行動(dòng)力學(xué)分析,分別推導(dǎo)其在兩種坐標(biāo)系下的動(dòng)力學(xué)模型。此外,還介紹一些模型預(yù)測(cè)控制的知識(shí)。其次搭建氣浮臺(tái)運(yùn)動(dòng)控制系統(tǒng)并完成星載計(jì)算機(jī)上的軟件架構(gòu)設(shè)計(jì),并設(shè)計(jì)實(shí)現(xiàn)一些基本模塊。首先采用一種非線性跟蹤微分器作為觀測(cè)器,對(duì)其功能分別進(jìn)行仿真與實(shí)驗(yàn)驗(yàn)證;其次根據(jù)噴嘴的安裝位置設(shè)計(jì)并實(shí)現(xiàn)推力變換分配算法;然后設(shè)計(jì)信號(hào)調(diào)制模塊,對(duì)需要PWM調(diào)制部分,給出一種經(jīng)典的PWM占空比的計(jì)算方法,對(duì)需要PWPF調(diào)制的部分,選取合理的參數(shù)并進(jìn)行仿真驗(yàn)證。然后進(jìn)行控制器的設(shè)計(jì)工作。首先分析電磁閥開(kāi)關(guān)特性的影響并設(shè)計(jì)PID控制器,實(shí)現(xiàn)氣浮臺(tái)的基本運(yùn)動(dòng)控制并與將要設(shè)計(jì)的模型預(yù)測(cè)控制器作對(duì)比。在此基礎(chǔ)上嘗試設(shè)計(jì)模型預(yù)測(cè)控制器。對(duì)兩種控制器分別采用階躍信號(hào)、斜坡信號(hào)、正弦信號(hào)進(jìn)行仿真與試驗(yàn)驗(yàn)證,結(jié)果表明PID控制器可以滿(mǎn)足試驗(yàn)需求,模型預(yù)測(cè)控制器盡管性能受到星載計(jì)算機(jī)硬件限制,仍可以用于運(yùn)動(dòng)控制。最后從氣浮臺(tái)的主要應(yīng)用領(lǐng)域抽象出自由飛行與定點(diǎn)懸浮、矩形軌跡跟蹤、圓軌跡跟蹤3中典型運(yùn)動(dòng)形式,并用對(duì)兩種控制器對(duì)以上運(yùn)動(dòng)控制的有效性進(jìn)行了數(shù)值仿真與試驗(yàn)驗(yàn)證,結(jié)果表明兩種控制器都實(shí)現(xiàn)了對(duì)上述典型運(yùn)動(dòng)的控制。由于模型預(yù)測(cè)控制器性能受限,PID的控制效果顯得相對(duì)較好,但是前者也顯示出控制過(guò)程更平穩(wěn)直接、抗干擾能力更好、控制量始終在執(zhí)行器的輸出范圍內(nèi)(主動(dòng)顯式的處理約束)、使得執(zhí)行器不至于長(zhǎng)時(shí)間陷入飽和狀態(tài)、控制量輸出較小節(jié)省燃料等優(yōu)點(diǎn)。
[Abstract]:Air floatation platform, as a kind of spacecraft ground simulation device which realizes almost frictionless motion on a plane by means of plane air bearing, has developed rapidly in recent decades because of its advantages of relatively low cost, longer duration, less disturbance and so on. It is widely used to control flexible manipulator, hardware testing of manipulator, free-flying satellite manipulator system, satellite formation flight and proximity operation, rendezvous and docking (capture and docking), low-gravity mechanism landing device and other topics of space mission research. As the basis of these studies, the first step is to realize the motion control of the air-floating platform. In this paper, the design and implementation of the motion control system of a three degree of freedom air floatation platform are introduced in detail, and the model predictive controller is used to control the system. First, the basic composition and key parameters of the air flotation platform are introduced. According to the relevant knowledge of theoretical mechanics, the inertial coordinate system and the body coordinate system are established, and the dynamic models of the air floatation platform are derived respectively. In addition, some knowledge of model predictive control is also introduced. Secondly, the motion control system of the air floatation platform is built and the software architecture on the spaceborne computer is designed, and some basic modules are designed and implemented. Firstly, a nonlinear tracking differentiator is used as observer, and its function is simulated and verified by experiments. Secondly, according to the installation position of the nozzle, the thrust transform assignment algorithm is designed and realized. Then, the signal modulation module is designed. A classical PWM duty cycle calculation method is presented for the PWM modulation part. The reasonable parameters are selected and verified by simulation. Then the controller is designed. Firstly, the influence of solenoid valve switching characteristics is analyzed and pid controller is designed to realize the basic motion control of the air floatation platform and compare it with the model predictive controller to be designed. On this basis, we try to design a model predictive controller. The two controllers are simulated and verified by step signal, ramp signal and sinusoidal signal respectively. The results show that the pid controller can meet the test demand, and the performance of the model predictive controller is limited by the hardware of spaceborne computer. Can still be used for motion control. Finally, from the main application fields of the air floatation platform, the typical motion forms of free flight and fixed-point suspension, rectangular trajectory tracking and circular trajectory tracking are abstracted. The effectiveness of the two controllers for the above motion control is numerically simulated and tested, and the results show that the two controllers can control the typical motion mentioned above. Because the performance of the model predictive controller is limited, the control effect of pid is relatively good, but the former also shows that the control process is more stable and direct, and the anti-jamming ability is better. The control quantity is always within the output range of the actuator (active and explicit processing constraints, so that the actuator does not fall into saturation state for a long time, the output of the control quantity is small to save fuel and so on.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:V416.8;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 鄧立為;宋申民;陳興林;;五自由度氣浮臺(tái)位置和姿態(tài)的分?jǐn)?shù)階控制[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2015年01期
2 席裕庚;李德偉;林姝;;模型預(yù)測(cè)控制——現(xiàn)狀與挑戰(zhàn)[J];自動(dòng)化學(xué)報(bào);2013年03期
3 陸艷輝;張曙光;;離散RCS的PWPF調(diào)制方式改進(jìn)及混合控制邏輯設(shè)計(jì)[J];航空學(xué)報(bào);2012年09期
4 曹喜濱;董曉光;張錦繡;楊正賢;葉東;;基于氣浮臺(tái)的編隊(duì)飛行地面試驗(yàn)建模與魯棒控制器設(shè)計(jì)[J];宇航學(xué)報(bào);2012年05期
5 張世杰;曹喜濱;;基于MicroSim仿真平臺(tái)的航天器交會(huì)對(duì)接物理仿真系統(tǒng)[J];航天控制;2006年02期
6 武利強(qiáng),林浩,韓京清;跟蹤微分器濾波性能研究[J];系統(tǒng)仿真學(xué)報(bào);2004年04期
相關(guān)博士學(xué)位論文 前1條
1 許劍;五自由度氣浮仿真試驗(yàn)臺(tái)樣機(jī)的研制及其關(guān)鍵技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 龐慧;基于分?jǐn)?shù)階理論的氣浮臺(tái)姿態(tài)控制系統(tǒng)設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2013年
2 劉宗明;基于氣浮臺(tái)的交會(huì)對(duì)接仿真控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2011年
,本文編號(hào):2004090
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2004090.html