MEMS音叉陀螺結(jié)構(gòu)振動(dòng)非線性及抑制技術(shù)研究
本文選題:MEMS陀螺 + 振動(dòng)非線性; 參考:《中國(guó)航天科技集團(tuán)公司第一研究院》2017年碩士論文
【摘要】:MEMS陀螺儀具有體積小、重量輕、成本低等優(yōu)點(diǎn),在軍事、民用領(lǐng)域內(nèi)都有著非常廣闊的應(yīng)用前景,自誕生起一直就是各國(guó)的研究熱點(diǎn)之一。論文針對(duì)雙質(zhì)量塊線振動(dòng)音叉式硅微機(jī)械陀螺儀敏感結(jié)構(gòu)的振動(dòng)非線性問題展開研究。論文首先論述了線振動(dòng)MEMS音叉陀螺儀的結(jié)構(gòu)與工作原理,將其簡(jiǎn)化成帶阻尼的二階彈簧諧振子系統(tǒng),引入三次非線性剛度,利用達(dá)芬方程建立了陀螺驅(qū)動(dòng)軸振動(dòng)微分方程,利用多尺度法求解達(dá)芬方程。其次,論文研究了陀螺驅(qū)動(dòng)軸的振動(dòng)非線性問題,利用能量法、ANSYS仿真軟件計(jì)算得到驅(qū)動(dòng)梁的三次非線性剛度,通過理論計(jì)算得到陀螺驅(qū)動(dòng)梳齒的三次非線性剛度,結(jié)果表明,驅(qū)動(dòng)梁的非線性剛度遠(yuǎn)大于梳齒的非線性剛度,因此,驅(qū)動(dòng)梁的非線性剛度是導(dǎo)致陀螺驅(qū)動(dòng)軸振動(dòng)非線性的主要原因;推導(dǎo)了陀螺驅(qū)動(dòng)軸不發(fā)生非線性遲滯的振幅臨界值與其振動(dòng)非線性系數(shù)之間的數(shù)學(xué)關(guān)系;最后,通過對(duì)陀螺驅(qū)動(dòng)軸開環(huán)幅頻特性數(shù)據(jù)的處理,得到其非線性系數(shù)的表征,并依據(jù)試驗(yàn)測(cè)定的非線性系數(shù),得到陀螺的驅(qū)動(dòng)振幅臨界值的理論值,與試驗(yàn)值相吻合。再次,論文提出了音叉線振動(dòng)硅微機(jī)械陀螺儀的結(jié)構(gòu)設(shè)計(jì)與實(shí)現(xiàn),通過理論研究和仿真分析相結(jié)合,確定了改版后MEMS陀螺儀的結(jié)構(gòu)參數(shù),在此基礎(chǔ)上,具體討論了結(jié)構(gòu)梁的設(shè)計(jì),模態(tài)誤差補(bǔ)償,抗過載等;設(shè)計(jì)了改進(jìn)后的MEMS陀螺的工藝流程和版圖,闡述了部分工藝、真空封裝。最后,組表測(cè)試。仿真和試驗(yàn)結(jié)果表明:陀螺結(jié)構(gòu)的驅(qū)動(dòng)軸振動(dòng)非線性系數(shù)下降為1/270,其不發(fā)生非線性遲滯的振幅臨界值提高約21.83倍。
[Abstract]:MEMS gyroscopes have many advantages, such as small size, light weight, low cost and so on. They have a very broad application prospect in military and civil fields. Since their birth, MEMS gyroscopes have been one of the research hotspots all over the world. In this paper, the vibration nonlinearity of silicon micromechanical gyroscopes with double mass line vibration tuning fork is studied. In this paper, the structure and working principle of MEMS tuning fork gyroscope with linear vibration are discussed firstly, which is simplified as a second-order spring harmonic oscillator system with damping, and the differential equation of vibration of gyroscope driving axis is established by introducing cubic nonlinear stiffness. The multi-scale method is used to solve the Dafen equation. Secondly, the nonlinear vibration of gyroscope driving shaft is studied. The cubic nonlinear stiffness of the driving beam is calculated by using the energy method and ANSYS software, and the cubic nonlinear stiffness of the gyroscope driven comb is obtained by theoretical calculation. The nonlinear stiffness of the driving beam is much larger than the nonlinear stiffness of the comb tooth. Therefore, the nonlinear stiffness of the driving beam is the main cause of the nonlinear vibration of the gyroscope drive shaft. The mathematical relation between the amplitude critical value of gyroscope driving axis without nonlinear hysteresis and its nonlinear coefficient is derived. Finally, the nonlinear coefficient is obtained by processing the amplitude frequency characteristic data of gyroscope drive shaft. According to the nonlinear coefficient measured by experiment, the theoretical value of the driving amplitude critical value of gyroscope is obtained, which is in agreement with the experimental value. Thirdly, the structure design and implementation of tuning fork line vibrating silicon micromachined gyroscope are proposed. The structural parameters of the modified MEMS gyroscope are determined through theoretical research and simulation analysis. The design of the structure beam, mode error compensation, overload resistance and so on are discussed in detail, the process flow and layout of the improved MEMS gyroscope are designed, and part of the process and vacuum package are described. Finally, the group table test. The simulation and experimental results show that the nonlinear coefficient of driving shaft vibration of gyroscope structure is reduced to 1 / 270, and the critical value of amplitude without nonlinear hysteresis is increased by 21.83 times.
【學(xué)位授予單位】:中國(guó)航天科技集團(tuán)公司第一研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許鵬;王帆;董冰玉;;一種低成本自適應(yīng)的MEMS陀螺溫度補(bǔ)償方法[J];微納電子技術(shù);2016年08期
2 周鑫;肖定邦;吳學(xué)忠;;微機(jī)電陀螺的現(xiàn)狀與發(fā)展趨勢(shì)[J];國(guó)防科技;2015年04期
3 滿興博;伍曉紅;孫清;;采用非線性Galerkin方法的柔性梁模型降階研究[J];西安交通大學(xué)學(xué)報(bào);2015年07期
4 王攀;黃麗斌;李宏生;倪云舫;;硅微陀螺儀閉環(huán)正交校正研究[J];傳感技術(shù)學(xué)報(bào);2013年03期
5 王嫘;韓豐田;董景新;劉云峰;;微靜電陀螺儀的結(jié)構(gòu)設(shè)計(jì)與工藝實(shí)現(xiàn)[J];納米技術(shù)與精密工程;2011年03期
6 陳志勇;周斌;張嶸;;微機(jī)械角振動(dòng)諧振器在低氣壓下的非線性振動(dòng)[J];儀器儀表學(xué)報(bào);2010年11期
7 王偉;劉軍潔;;Z軸微機(jī)械陀螺儀的空氣阻尼分析[J];西安工業(yè)大學(xué)學(xué)報(bào);2010年03期
8 董林璽;李壽洛;陳金丹;顏海霞;許立;王光義;孫玲玲;;不同檢測(cè)電容結(jié)構(gòu)對(duì)MEMS電容傳感器性能的影響分析[J];傳感技術(shù)學(xué)報(bào);2010年04期
9 文永蓬;王安麟;姜濤;劉釗;劉廣軍;;音叉振動(dòng)式微機(jī)械陀螺彈性梁的研究[J];高技術(shù)通訊;2008年12期
10 張均紅;趙君轍;;慣性導(dǎo)航中陀螺儀的研究現(xiàn)狀及發(fā)展趨勢(shì)[J];科協(xié)論壇(下半月);2008年07期
相關(guān)博士學(xué)位論文 前2條
1 關(guān)榮鋒;MEMS器件設(shè)計(jì)、封裝工藝及應(yīng)用研究[D];華中科技大學(xué);2005年
2 陳永;基于滑膜阻尼效應(yīng)的音叉式微機(jī)械陀螺研究[D];中國(guó)科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2004年
相關(guān)碩士學(xué)位論文 前4條
1 張瓊;電容式微機(jī)械陀螺儀的研究[D];中北大學(xué);2009年
2 孫家慶;硅微振動(dòng)陀螺制造誤差電補(bǔ)償方法研究[D];南京理工大學(xué);2008年
3 郭慧芳;三框架硅微機(jī)械陀螺的結(jié)構(gòu)設(shè)計(jì)及加工工藝研究[D];中北大學(xué);2008年
4 祁曉瑾;MEMS高g值加速度傳感器研究[D];中北大學(xué);2007年
,本文編號(hào):2003084
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2003084.html