遙感GPP模型在中國地區(qū)多站點的應用與比較
本文選題:總初級生產(chǎn)力 + 遙感 ; 參考:《植物生態(tài)學報》2017年03期
【摘要】:在區(qū)域和全球尺度上估算植被總初級生產(chǎn)力(GPP)對理解陸地生態(tài)系統(tǒng)的碳循環(huán)具有重要意義。由于地表異質(zhì)性的存在,局限在站點尺度上的觀測數(shù)據(jù)無法直接擴展到更大空間尺度的區(qū)域上。通過與地面觀測數(shù)據(jù)相結合,遙感成為實現(xiàn)植被GPP空間擴展的主要工具。但是現(xiàn)有模型對氣象數(shù)據(jù)依賴較多,且在不同氣象數(shù)據(jù)集的驅(qū)動下,模擬結果間會有差異,進而產(chǎn)生不確定性。建立以遙感數(shù)據(jù)為主的GPP模型(簡稱遙感GPP模型),使其易于在區(qū)域和全球尺度上應用,是解決上述問題的一個可行方案。該研究使用TG(temperature and greenness model)和VI(vegetation index model)兩個遙感GPP模型,結合中國通量觀測研究聯(lián)盟(China FLUX)的臺站數(shù)據(jù),對中國典型植被類型的GPP進行了模擬、比較與評估,旨在進一步提高遙感GPP模型在中國區(qū)域的適用性。結果表明:(1)TG和VI模型選用的遙感參數(shù)均與GPP觀測值有較高的相關性,都可以得到可信的光合轉(zhuǎn)換系數(shù)m和a;谂c夜間地表溫度平均值的相關關系,m和a在空間尺度上得到了擴展,這使得TG和VI都可以應用到區(qū)域尺度上。(2)TG和VI模型的模擬值與實測值間的相關性大多較高,決定系數(shù)(R~2)多在0.67以上。但不同臺站間的誤差變動較大,TG模型的均方根誤差為0.29 6.40 g·m~( 2)·d~( 1),VI模型的均方根誤差為0.31 7.09 g·m~( 2)·d~( 1)。(3)總體而言,TG模型的表現(xiàn)優(yōu)于VI,尤其在海拔或緯度較高、以溫度限制為主的臺站,TG模型的模擬效果較好。上述結果初步揭示遙感GPP模型具備了在區(qū)域尺度上應用的潛力。
[Abstract]:The estimation of total primary productivity (GPP) of vegetation at regional and global scales is of great significance in understanding the carbon cycle of terrestrial ecosystems. Because of the heterogeneity of the surface, the observation data confined to the site scale can not be directly extended to the larger spatial scale area. By combining with ground observation data, remote sensing has become the main tool for vegetation GPP spatial expansion. However, the existing models depend more on meteorological data, and driven by different meteorological data sets, the simulation results will be different, which will lead to uncertainty. The GPP model based on remote sensing data (GPP model for short), which is easy to be applied in regional and global scale, is a feasible solution to the above problems. In this study, two remote sensing GPP models, TG(temperature and greenness model) and VI(vegetation index model, were used to simulate, compare and evaluate the GPP of typical vegetation types in China. The purpose of this paper is to improve the applicability of remote sensing GPP model in China. The results show that the remote sensing parameters selected by the TG and VI models are highly correlated with the observed values of GPP, and reliable photosynthetic conversion coefficients m and a can be obtained. Based on the correlation between the mean value of surface temperature at night and the average value of surface temperature, m and a have been extended on spatial scale, which makes TG and VI can be applied to the regional scale. The correlation between simulated values and measured values of TG and VI models is mostly high. The determination coefficient is more than 0.67. However, the root mean square error of TG model is 0.29 ~ 6.40 g / m ~ (-1) 路m ~ (-1), the root mean square error of VI model is 0.31 ~ 7.09 g / m ~ (-1) / m ~ (2) / m ~ (-1) / m ~ (-1) ~ (-1) / t ~ (3), and the performance of TG model is better than that of Vi in general, especially at high altitude or latitude. The simulation effect of TG model with temperature limitation is better. The above results reveal that the remote sensing GPP model has the potential to be applied in the regional scale.
【作者單位】: 北京林業(yè)大學林學院;
【基金】:國家林業(yè)公益性行業(yè)科研專項(201404201) 中央高;究蒲袠I(yè)務費專項(BLX2015-16)
【分類號】:Q948;TP79
【相似文獻】
相關期刊論文 前5條
1 伍衛(wèi)星;王紹強;肖向明;于貴瑞;伏玉玲;郝彥賓;;利用MODIS影像和氣候數(shù)據(jù)模擬中國內(nèi)蒙古溫帶草原生態(tài)系統(tǒng)總初級生產(chǎn)力[J];中國科學(D輯:地球科學);2008年08期
2 李登秋;周艷蓮;居為民;王輝民;柳藝博;吳小翠;;太陽輻射變化對亞熱帶人工常綠針葉林總初級生產(chǎn)力影響的模擬分析[J];植物生態(tài)學報;2014年03期
3 吳力博;古松;趙亮;徐世曉;周華坤;馮超;徐維新;李英年;趙新全;唐艷鴻;;三江源地區(qū)人工草地的生態(tài)系統(tǒng)CO_2凈交換、總初級生產(chǎn)力及其影響因子[J];植物生態(tài)學報;2010年07期
4 郝彥賓;王艷芬;崔驍勇;;干旱脅迫降低了內(nèi)蒙古羊草草原的碳累積[J];植物生態(tài)學報;2010年08期
5 ;[J];;年期
相關會議論文 前1條
1 袁文平;劉曙光;;基于遙感資料估算全球植被總初級生產(chǎn)力[A];遙感定量反演算法研討會摘要集[C];2010年
相關博士學位論文 前1條
1 仇寬彪;中國植被總初級生產(chǎn)力、蒸散發(fā)及水分利用效率的估算及時空變化[D];北京林業(yè)大學;2015年
相關碩士學位論文 前3條
1 何明珠;遙感數(shù)據(jù)與兩葉光能利用率模型同化的總初級生產(chǎn)力模擬[D];南京大學;2013年
2 劉寶升;基于MODIS和通量數(shù)據(jù)的玉米總初級生產(chǎn)力反演研究[D];電子科技大學;2013年
3 劉敏;基于RS和GIS的陸地生態(tài)系統(tǒng)生產(chǎn)力估算及不確定性研究[D];南京師范大學;2008年
,本文編號:1991214
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1991214.html