仿青蛙變體移動(dòng)機(jī)器人的設(shè)計(jì)與實(shí)驗(yàn)
本文選題:仿生機(jī)器人 + 變體機(jī)構(gòu)。 參考:《北方工業(yè)大學(xué)》2017年碩士論文
【摘要】:近年來,仿生機(jī)器人一直是前沿領(lǐng)域研究的熱點(diǎn)。為了深入探索復(fù)雜的不可預(yù)測的環(huán)境,就有必要利用移動(dòng)能力和環(huán)境適應(yīng)能力強(qiáng)的機(jī)器人來代替人類執(zhí)行任務(wù)。青蛙爆發(fā)性強(qiáng),可以輕松越過障礙物或溝渠,并且水陸兩棲的生物特性使其具備了超越很多生物的環(huán)境適應(yīng)能力。因此本文基于對(duì)青蛙優(yōu)異的兩棲運(yùn)動(dòng)能力的研究,設(shè)計(jì)了一種可以實(shí)現(xiàn)陸地跳躍模式和水中蛙泳模式轉(zhuǎn)換的雙模式仿青蛙變體移動(dòng)機(jī)器人設(shè)計(jì)。首先,設(shè)計(jì)適用于機(jī)器人兩棲運(yùn)動(dòng)模式的跳躍執(zhí)行機(jī)構(gòu)、觸發(fā)機(jī)構(gòu)、復(fù)位機(jī)構(gòu)、變體機(jī)構(gòu)等可行有效的機(jī)構(gòu)方案,并對(duì)其進(jìn)行詳細(xì)的論證與計(jì)算,使整體方案具備較好的可行性。然后,建立各構(gòu)件的實(shí)體模型,在Pro/E中通過虛擬裝配對(duì)設(shè)計(jì)方案進(jìn)一步改進(jìn)和優(yōu)化;建立跳躍執(zhí)行機(jī)構(gòu)的運(yùn)動(dòng)學(xué)方程,通過MATLAB仿真出蛙腿的跳躍軌跡;對(duì)機(jī)器人整體模型進(jìn)行運(yùn)動(dòng)學(xué)分析與仿真,模擬仿青蛙變體移動(dòng)機(jī)器人循環(huán)周期的運(yùn)動(dòng)狀態(tài),檢驗(yàn)質(zhì)心運(yùn)動(dòng)軌跡。接著,基于ANSYS有限元分析方法,對(duì)仿青蛙變體移動(dòng)機(jī)器人重要部件進(jìn)行有限元分析獲得光軸的位移、應(yīng)力、應(yīng)變?cè)茍D,對(duì)機(jī)器人柔性腳通過模態(tài)分析,避免固有頻率與機(jī)器人工作頻率相近而產(chǎn)生的共振,在減少?zèng)_擊的同時(shí),還能儲(chǔ)存能量,用于下一個(gè)運(yùn)動(dòng)周期。最后,基于機(jī)器人跳躍執(zhí)行機(jī)構(gòu)的幾何形狀、內(nèi)部自由度數(shù)以及腿部與機(jī)器人軀干的連接關(guān)系,將機(jī)器人模型簡化為由小腿、大腿和軀干組成的動(dòng)力學(xué)模型,建立了機(jī)器人的運(yùn)動(dòng)學(xué)模型和Lagrange動(dòng)力學(xué)模型,并對(duì)模型進(jìn)行仿真驗(yàn)證。仿真結(jié)果證明機(jī)器人質(zhì)心的運(yùn)動(dòng)軌跡和各關(guān)節(jié)角的變化軌跡與生物青蛙的實(shí)際運(yùn)動(dòng)情況相一致,同時(shí)也驗(yàn)證了所建立的機(jī)器人機(jī)構(gòu)數(shù)學(xué)模型的正確性。
[Abstract]:In recent years, bionic robot has been a hot research field. In order to explore the complex and unpredictable environment, it is necessary to use robots with strong mobility and adaptability to environment to perform tasks instead of human beings. Frogs are explosive enough to easily cross obstacles or ditches, and their amphibious biological properties enable them to adapt to the environment beyond many organisms. Therefore, based on the research of frog's excellent amphibious movement ability, this paper designs a dual-mode frog mimic mobile robot which can realize the conversion between land jumping mode and breaststroke mode in water. First of all, a feasible and effective mechanism scheme, such as jumping actuator, trigger mechanism, reset mechanism, variant mechanism and so on, is designed for the amphibious motion mode of robot, and it is demonstrated and calculated in detail. So that the overall scheme has a better feasibility. Then, the entity model of each component is established, the design scheme is further improved and optimized by virtual assembly in Pro/E, the kinematics equation of jumping actuator is established, and the jumping track of frog leg is simulated by MATLAB. The kinematics analysis and simulation of the whole robot model are carried out to simulate the movement state of the cycle of the frog-like mobile robot and to check the trajectory of the centroid motion. Then, based on the ANSYS finite element analysis method, the important parts of the frog mobile robot are analyzed by finite element method to obtain the displacement, stress and strain cloud diagram of the optical axis, and the modal analysis of the flexible feet of the robot. In order to avoid resonance between the natural frequency and the operating frequency of the robot, the energy can be stored for the next motion cycle while reducing the impact. Finally, based on the geometry, the number of degrees of freedom and the connection between the legs and the robot torso, the robot model is simplified to a dynamic model consisting of the calf, thigh and torso. The kinematics model and Lagrange dynamics model of the robot are established, and the simulation results of the model are verified. The simulation results show that the trajectory of the robot centroid and the change of the joint angle are consistent with the actual motion of the biological frog, and the correctness of the mathematical model of the robot mechanism is also verified.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高俊;畢樹生;李吉;蔡月日;;胸鰭撲翼式機(jī)器魚的設(shè)計(jì)及水動(dòng)力實(shí)驗(yàn)[J];北京航空航天大學(xué)學(xué)報(bào);2011年03期
2 楊小傳;胡海拉;王培聰;趙克強(qiáng);;單足彈跳機(jī)器人彈跳機(jī)構(gòu)設(shè)計(jì)與彈跳動(dòng)力學(xué)分析[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期
3 楊小傳;胡海拉;王培聰;趙克強(qiáng);;一種仿蛙單足彈跳機(jī)器人彈跳設(shè)計(jì)與動(dòng)力學(xué)分析[J];機(jī)械工程與自動(dòng)化;2006年02期
4 李保江;;彈跳機(jī)器人動(dòng)力學(xué)分析[J];南京航空航天大學(xué)學(xué)報(bào);2006年01期
5 吉愛紅,戴振東,周來水;仿生機(jī)器人的研究進(jìn)展[J];機(jī)器人;2005年03期
6 許宏巖,付宜利,王樹國,劉建國;仿生機(jī)器人的研究[J];機(jī)器人;2004年03期
7 劉壯志,席文明,朱劍英,吳洪濤;彈跳式機(jī)器人研究[J];機(jī)器人;2003年06期
8 田宇,吳鎮(zhèn)煒,柳長春;開放式三自由度全方位移動(dòng)機(jī)器人實(shí)驗(yàn)平臺(tái)[J];機(jī)器人;2002年02期
9 張朋飛,何克忠,歐陽正柱,張軍宇;多功能室外智能移動(dòng)機(jī)器人實(shí)驗(yàn)平臺(tái)—THMR-V[J];機(jī)器人;2002年02期
10 孫振平,安向京,賀漢根;CITAVT-IV——視覺導(dǎo)航的自主車[J];機(jī)器人;2002年02期
相關(guān)博士學(xué)位論文 前2條
1 王猛;仿青蛙跳躍機(jī)器人的研制[D];哈爾濱工業(yè)大學(xué);2009年
2 劉壯志;彈跳機(jī)器人若干關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2005年
相關(guān)碩士學(xué)位論文 前3條
1 張偉;新型氣動(dòng)仿青蛙機(jī)器人設(shè)計(jì)及彈跳性能研究[D];哈爾濱工業(yè)大學(xué);2012年
2 張帥;基于ARM的導(dǎo)航移動(dòng)機(jī)器人控制系統(tǒng)研究[D];大連理工大學(xué);2007年
3 關(guān)山原野;仿生機(jī)器蛙跳躍機(jī)理分析及運(yùn)動(dòng)仿真[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號(hào):1983058
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1983058.html