水下無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)部署算法的研究
本文選題:水下無線傳感器網(wǎng)絡(luò) + 節(jié)點(diǎn)部署; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:隨著世界各國(guó)探索海洋熱潮的不斷興起,無線傳感器網(wǎng)絡(luò)技術(shù)的應(yīng)用不再拘泥于對(duì)陸地上信息的感知與獲取,而逐漸向更為浩瀚的海洋進(jìn)發(fā)。作為傳統(tǒng)無線傳感器網(wǎng)絡(luò)在水下的延伸,水下無線傳感器網(wǎng)絡(luò)在海底礦產(chǎn)資源的勘探與開發(fā)、水污染防治、海嘯與地震預(yù)警、導(dǎo)航定位以及軍事戰(zhàn)略部署等方面都擁有著廣闊的應(yīng)用前景,已經(jīng)引起了業(yè)界研究人員的高度重視。水下無線傳感器網(wǎng)絡(luò)的迅猛發(fā)展在帶來諸多機(jī)遇的同時(shí),也面臨著一些亟待解決的技術(shù)難題。一方面,水下信道因其傳輸速率低、延時(shí)高等復(fù)雜多變的特性,決定了現(xiàn)有的陸地通信協(xié)議與網(wǎng)絡(luò)模型不能直接應(yīng)用于三維水環(huán)境中;另一方面,作為水下無線傳感器網(wǎng)絡(luò)研究的基礎(chǔ)問題,節(jié)點(diǎn)部署機(jī)制的優(yōu)劣直接決定著整個(gè)網(wǎng)絡(luò)對(duì)興趣數(shù)據(jù)的感知、獲取與處理能力。因此,本文圍繞水下無線傳感器網(wǎng)絡(luò)的節(jié)點(diǎn)部署問題,討論并分析了不同的部署算法下對(duì)網(wǎng)絡(luò)覆蓋性能的影響。研究的主要內(nèi)容如下:針對(duì)水環(huán)境中節(jié)點(diǎn)的分層覆蓋問題,提出了一種基于深度調(diào)節(jié)機(jī)制的水下無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)部署算法。該算法首先通過計(jì)算各水下傳感器節(jié)點(diǎn)所對(duì)應(yīng)的沃羅諾伊多邊形面積完成調(diào)度節(jié)點(diǎn)的選取,其次根據(jù)調(diào)度節(jié)點(diǎn)的下沉距離進(jìn)行深度調(diào)節(jié),并最終實(shí)現(xiàn)一個(gè)層次化的三維節(jié)點(diǎn)部署目標(biāo)。仿真實(shí)驗(yàn)結(jié)果證明,本文提出的部署方案在網(wǎng)絡(luò)覆蓋率及節(jié)點(diǎn)間的連通率方面均表現(xiàn)出良好的性能。為了更一步研究水下無線傳感器網(wǎng)絡(luò)中的節(jié)點(diǎn)冗余覆蓋問題,針對(duì)隨機(jī)部署的水下傳感器節(jié)點(diǎn),設(shè)計(jì)一種基于定向移動(dòng)虛擬距離的節(jié)點(diǎn)部署策略。該策略將節(jié)點(diǎn)的移動(dòng)過程分解為若干個(gè)步驟,各節(jié)點(diǎn)在每個(gè)步驟中都依據(jù)平衡距離與鄰居節(jié)點(diǎn)的坐標(biāo)關(guān)系進(jìn)行位移調(diào)整,使網(wǎng)絡(luò)中的節(jié)點(diǎn)從覆蓋密集區(qū)域移動(dòng)至稀疏區(qū)域,從而完成對(duì)目標(biāo)監(jiān)測(cè)水域最大范圍的覆蓋。仿真結(jié)果表明,該節(jié)點(diǎn)部署策略與隨機(jī)部署機(jī)制相比,在降低冗余覆蓋、減少網(wǎng)絡(luò)開銷方面有明顯的改善。
[Abstract]:With the rising of the ocean exploration boom in the world, the application of wireless sensor network technology is no longer confined to the perception and acquisition of information on land, but gradually to the ocean. As an extension of traditional wireless sensor networks under water, underwater wireless sensor networks in the exploration and development of submarine mineral resources, water pollution prevention, tsunami and earthquake warning, Navigation and positioning as well as military strategic deployment have a broad application prospects, has attracted great attention of researchers in the industry. The rapid development of underwater wireless sensor networks brings many opportunities, but also faces some technical problems to be solved. On the one hand, because of its complex and changeable characteristics such as low transmission rate and high delay, the existing terrestrial communication protocols and network models can not be directly applied to three-dimensional water environment. As the basic problem of underwater wireless sensor networks, the mechanism of node deployment directly determines the ability of the whole network to perceive, acquire and process interesting data. Therefore, the effect of different deployment algorithms on network coverage performance is discussed and analyzed around the problem of node deployment in underwater wireless sensor networks. The main contents of this paper are as follows: aiming at the problem of hierarchical coverage of nodes in water environment, a node deployment algorithm for underwater wireless sensor networks based on depth adjustment mechanism is proposed. Firstly, the algorithm selects the dispatching nodes by calculating the corresponding polygon area of the underwater sensor nodes, and then adjusts the depth of the nodes according to the sinking distance of the nodes. Finally, a hierarchical three-dimensional node deployment target is realized. Simulation results show that the proposed deployment scheme has good performance in network coverage and connectivity between nodes. In order to further study the problem of node redundant coverage in underwater wireless sensor networks, a node deployment strategy based on directional moving virtual distance is designed for randomly deployed underwater sensor nodes. In this strategy, the node moving process is decomposed into several steps. In each step, each node adjusts its displacement according to the balance distance and the coordinate relation of the neighbor node, so that the nodes in the network move from the overlay area to the sparse area. Thus, the maximum coverage of the target monitoring area is achieved. The simulation results show that compared with the random deployment mechanism, the node deployment strategy has obvious improvement in reducing redundant coverage and network overhead.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212.9;TN929.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張迎迎;劉廣鐘;徐明;;三維網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的水聲傳感器網(wǎng)絡(luò)MAC協(xié)議[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2015年04期
2 陳秋麗;何明;王琰;陳希亮;王立輝;;面向海洋監(jiān)測(cè)的水聲傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位算法[J];計(jì)算機(jī)科學(xué);2015年02期
3 畢京學(xué);郭英;甄杰;張鼎凱;楊凱;段淑珍;;水下無線傳感器網(wǎng)絡(luò)定位技術(shù)研究進(jìn)展[J];導(dǎo)航定位學(xué)報(bào);2014年01期
4 姚西;;水下無線傳感器網(wǎng)絡(luò)定位技術(shù)綜述[J];現(xiàn)代電子技術(shù);2013年07期
5 李世偉;王文敬;張聚偉;;基于潛艇深度的水下傳感器網(wǎng)絡(luò)部署[J];傳感技術(shù)學(xué)報(bào);2012年11期
6 彭曉彤;周懷陽;吳邦春;呂楓;吳正偉;楊燦軍;李培良;李德俊;金波;馮正平;李德平;;美國(guó)MARS海底觀測(cè)網(wǎng)絡(luò)中國(guó)節(jié)點(diǎn)試驗(yàn)[J];地球科學(xué)進(jìn)展;2011年09期
7 羅強(qiáng);潘仲明;;一種小規(guī)模水下無線傳感器網(wǎng)絡(luò)的部署算法[J];傳感技術(shù)學(xué)報(bào);2011年07期
8 黃炳強(qiáng);曹廣益;;基于模糊人工勢(shì)場(chǎng)的移動(dòng)機(jī)器人路徑規(guī)劃[J];上海理工大學(xué)學(xué)報(bào);2006年04期
9 曹峰;劉麗萍;王智;;能量有效的無線傳感器網(wǎng)絡(luò)部署[J];信息與控制;2006年02期
10 張培艷,呂恬生;基于模擬退火-人工勢(shì)場(chǎng)法的足球機(jī)器人路徑規(guī)劃研究[J];機(jī)械科學(xué)與技術(shù);2003年04期
相關(guān)重要報(bào)紙文章 前1條
1 劉巖;李明杰;;21世紀(jì)的日本海洋政策建議[N];中國(guó)海洋報(bào);2006年
相關(guān)博士學(xué)位論文 前1條
1 杜曉玉;面向水環(huán)境監(jiān)測(cè)的傳感網(wǎng)覆蓋算法研究[D];南京郵電大學(xué);2015年
相關(guān)碩士學(xué)位論文 前3條
1 鄭語晨;剛性驅(qū)動(dòng)水下傳感器節(jié)點(diǎn)自組織布置[D];合肥工業(yè)大學(xué);2013年
2 阮浩;水下無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位算法的設(shè)計(jì)與實(shí)現(xiàn)[D];南京郵電大學(xué);2013年
3 羅強(qiáng);水下無線傳感器網(wǎng)絡(luò)的部署研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2011年
,本文編號(hào):1952694
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1952694.html