天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

針對(duì)BA-FRVM的研究及用于汽車典型故障件的數(shù)量預(yù)測(cè)

發(fā)布時(shí)間:2018-05-29 19:30

  本文選題:汽車故障件 + 預(yù)測(cè); 參考:《西南交通大學(xué)》2017年碩士論文


【摘要】:近年來,隨著汽車企業(yè)的快速發(fā)展,該行業(yè)數(shù)據(jù)量激增,汽車企業(yè)迫切需要在數(shù)據(jù)中去尋找規(guī)律,根據(jù)歷史數(shù)據(jù)預(yù)測(cè)配件需求數(shù)量、診斷汽車故障等。在這樣的背景下,許多人工智能算法開始被應(yīng)用于汽車行業(yè),其中,運(yùn)用最多的是SVM和BP神經(jīng)網(wǎng)絡(luò)。鑒于BP神經(jīng)網(wǎng)絡(luò)和SVM自身的一些局限性和缺點(diǎn),本文采用BA-RVM優(yōu)化后的BA-FRVM算法作為汽車典型故障件數(shù)量的預(yù)測(cè)。本文建立一種基于蝙蝠算法快速相關(guān)向量機(jī)的汽車典型故障件數(shù)量預(yù)測(cè)模型,在Matlab R2014a軟件上實(shí)現(xiàn)全部仿真實(shí)驗(yàn)。首先,研究干擾相關(guān)向量機(jī)預(yù)測(cè)準(zhǔn)確率的影響因子-核參數(shù),通過蝙蝠算法選擇適合當(dāng)前數(shù)據(jù)的核參數(shù),達(dá)到核參數(shù)的自適應(yīng);在汽車典型故障件數(shù)據(jù)下驗(yàn)證BA-RVM算法,通過仿真實(shí)驗(yàn)選擇合適的特征歸一化方法;其次,通過BA-RVM算法在不同的數(shù)據(jù)下實(shí)驗(yàn),選出合適的核函數(shù),接著對(duì)BA-RVM算法訓(xùn)練效率進(jìn)行優(yōu)化,得到BA-FRVM算法,將UCI網(wǎng)站上三種不同類型的數(shù)據(jù)作為實(shí)驗(yàn)數(shù)據(jù),以此來驗(yàn)證BA-FRVM算法的可信性和可靠性,然后再在汽車典型故障件數(shù)據(jù)下進(jìn)行實(shí)驗(yàn),并與BA-RVM算法對(duì)比訓(xùn)練時(shí)間、相關(guān)向量數(shù)以及錯(cuò)誤率;再次,對(duì)BA-FRVM算法進(jìn)行多方面的研究,研究不同迭代次數(shù)與錯(cuò)誤率的關(guān)系,不同蝙蝠數(shù)量對(duì)預(yù)測(cè)準(zhǔn)確率的影響,訓(xùn)練模型錯(cuò)誤率與核參數(shù)寬度的關(guān)系,不同訓(xùn)練樣本量對(duì)預(yù)測(cè)準(zhǔn)確率的影響,與相似算法BA-SVR對(duì)比訓(xùn)練時(shí)間、相關(guān)(支持)向量數(shù)以及錯(cuò)誤率,與廣泛應(yīng)用的BA-BP算法對(duì)比訓(xùn)練時(shí)間和錯(cuò)誤率。最后,將BA-FRVM算法用Java編程語言實(shí)現(xiàn),用jblas矩陣庫實(shí)現(xiàn)矩陣運(yùn)算,并將BA-FRVM算法試用于實(shí)際的故障件數(shù)量預(yù)測(cè)系統(tǒng)中。最終,通過實(shí)驗(yàn)結(jié)果可知:相比BA-SVR和BA-BP算法,BA-FRVM算法訓(xùn)練速度更快,預(yù)測(cè)準(zhǔn)確率更高,能夠更好的適用于汽車典型故障件數(shù)量預(yù)測(cè)。
[Abstract]:In recent years, with the rapid development of automobile enterprises, the volume of data in this industry has increased rapidly. Automobile enterprises urgently need to find the rules in the data, predict the number of spare parts according to historical data, diagnose automobile faults and so on. In this context, many artificial intelligence algorithms are beginning to be applied to the automotive industry, among which, the most widely used are SVM and BP neural networks. In view of the limitations and shortcomings of BP neural network and SVM, this paper uses the optimized BA-FRVM algorithm of BA-RVM as the prediction of the number of vehicle typical fault parts. In this paper, a fast correlation vector machine based on bat algorithm is established to predict the number of typical fault parts. The simulation experiments are implemented on Matlab R2014a software. Firstly, the kernel parameters, which affect the prediction accuracy of interference correlation vector machines, are studied, the kernel parameters suitable for current data are selected by bat algorithm, and the adaptive kernel parameters are achieved. The BA-RVM algorithm is verified under the vehicle typical fault data. The proper feature normalization method is selected through the simulation experiment. Secondly, the appropriate kernel function is selected through the experiment of BA-RVM algorithm under different data, then the training efficiency of BA-RVM algorithm is optimized, and the BA-FRVM algorithm is obtained. Three different types of data on the UCI website are taken as experimental data to verify the credibility and reliability of the BA-FRVM algorithm, and then the experiment is carried out under the typical fault data of the vehicle, and the training time is compared with that of the BA-RVM algorithm. Thirdly, the relationship between different iterations and error rates, the effects of different bat numbers on prediction accuracy, the relationship between the training model error rate and the width of kernel parameters, and the relationship between the training model error rate and the kernel parameter width are studied. The effect of different training samples on prediction accuracy is compared with similar algorithm BA-SVR, correlation (support) vector number and error rate, training time and error rate compared with widely used BA-BP algorithm. Finally, BA-FRVM algorithm is realized by Java programming language, matrix operation is realized by jblas matrix library, and BA-FRVM algorithm is used in actual fault prediction system. Finally, the experimental results show that: compared with BA-SVR and BA-BP algorithm BA-FRVM algorithm training speed is faster, prediction accuracy is higher, can be better applied to the number of vehicle typical fault prediction.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U472;TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前8條

1 Heather Baldwin;孫立;;機(jī)載娛樂系統(tǒng)的維修日趨主動(dòng)[J];航空維修與工程;2010年06期

2 毛敏麟;;起動(dòng)機(jī)兩種典型故障[J];江蘇航空;2007年04期

3 楊斌;;基于GERT網(wǎng)絡(luò)的航空產(chǎn)品故障件返修流程研究[J];價(jià)值工程;2010年32期

4 王慎;李慶民;彭英武;;串件拼修對(duì)策下兩級(jí)備件維修供應(yīng)系統(tǒng)動(dòng)態(tài)管理模型[J];航空學(xué)報(bào);2013年06期

5 梁鴻;梁志;;工程機(jī)械產(chǎn)品故障件失效分析的方法研究[J];機(jī)械工業(yè)標(biāo)準(zhǔn)化與質(zhì)量;2006年12期

6 蔡城堡;;巧用測(cè)試工具快速排除引氣系統(tǒng)故障[J];航空維修與工程;2007年04期

7 ;減少JYJXC-135/220型繼電器故障件數(shù)[J];中國(guó)質(zhì)量;2012年11期

8 ;[J];;年期

相關(guān)會(huì)議論文 前1條

1 梁鴻;梁志;;工程機(jī)械產(chǎn)品故障件失效分析的方法研究[A];2006年全國(guó)機(jī)械可靠性學(xué)術(shù)交流會(huì)論文集[C];2006年

相關(guān)重要報(bào)紙文章 前1條

1 南航新疆分公司 羅豪;為飛機(jī)裝上隱形的安全“翅膀”[N];中國(guó)民航報(bào);2013年

相關(guān)碩士學(xué)位論文 前2條

1 陳強(qiáng);針對(duì)BA-FRVM的研究及用于汽車典型故障件的數(shù)量預(yù)測(cè)[D];西南交通大學(xué);2017年

2 李?yuàn)櫇?機(jī)電產(chǎn)品故障件處理軟件的設(shè)計(jì)[D];西安電子科技大學(xué);2013年

,

本文編號(hào):1952109

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1952109.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6406e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com