基于改進遺傳算法的測試數(shù)據(jù)自動生成的研究
本文選題:軟件測試 + 遺傳算法 ; 參考:《計算機科學(xué)》2017年03期
【摘要】:測試數(shù)據(jù)自動生成是軟件測試的基礎(chǔ),也是測試自動化技術(shù)實現(xiàn)的關(guān)鍵環(huán)節(jié)。為了提高測試自動化的效率,在結(jié)合測試數(shù)據(jù)自動生成模型的基礎(chǔ)上,提出一種傳統(tǒng)遺傳算法的改進算法。該算法使用了自適應(yīng)交叉算子和變異算子,并引入模擬退火機制對其進行改進。同時,該算法還對適應(yīng)度函數(shù)進行了合理的設(shè)計,以加速數(shù)據(jù)的優(yōu)化過程。通過三角形程序、折半查找和冒泡排序程序,與基本遺傳算法、自適應(yīng)遺傳算法進行了比較與分析,并且對改進算法做了性能分析。實驗結(jié)果表明了該算法的實用性以及在測試數(shù)據(jù)生成中的可行性和高效性。
[Abstract]:Automatic generation of test data is the foundation of software testing and the key link of test automation technology. In order to improve the efficiency of test automation, an improved algorithm of traditional genetic algorithm (GA) is proposed on the basis of automatic generation model of test data. The adaptive crossover operator and mutation operator are used in the algorithm, and the simulated annealing mechanism is introduced to improve the algorithm. At the same time, the fitness function is designed reasonably to speed up the process of data optimization. Compared with basic genetic algorithm (GA) and adaptive genetic algorithm (AGA), the improved algorithm is compared and analyzed by triangle program, half search program and bubbling sorting program, and the performance of the improved algorithm is analyzed. Experimental results show the practicability of the algorithm and its feasibility and efficiency in test data generation.
【作者單位】: 首都師范大學(xué)信息工程學(xué)院;成像技術(shù)北京市高精尖創(chuàng)新中心;北京航空航天大學(xué)計算機學(xué)院;
【基金】:國家自然科學(xué)基金(31571563) 國家科技支撐計劃項目(2013BAH19F01) 國外訪學(xué)項目(067145301400) 北京市屬高等學(xué)校創(chuàng)新團隊建設(shè)與教師職業(yè)發(fā)展計劃項目 高可靠嵌入式系統(tǒng)技術(shù)北京市工程研究中心資助
【分類號】:TP311.53;TP18
【相似文獻】
相關(guān)期刊論文 前10條
1 吳瑞鏞,徐大紋;具有年齡結(jié)構(gòu)的遺傳算法[J];桂林電子工業(yè)學(xué)院學(xué)報;2001年04期
2 楊艷麗,史維祥;一種新的優(yōu)化算法—遺傳算法的設(shè)計[J];液壓氣動與密封;2001年02期
3 楊宜康,李雪,彭勤科,黃永宣;具有年齡結(jié)構(gòu)的遺傳算法[J];計算機工程與應(yīng)用;2002年11期
4 谷峰,吳勇,唐俊;遺傳算法的改進[J];微機發(fā)展;2003年06期
5 ;遺傳算法[J];計算機教育;2004年10期
6 趙義紅,李正文,何其四;生物信息處理系統(tǒng)遺傳算法探討[J];成都理工大學(xué)學(xué)報(自然科學(xué)版);2004年05期
7 劉坤,劉偉波,吳忠強;基于模糊遺傳算法的電液位置伺服系統(tǒng)控制[J];黑龍江科技學(xué)院學(xué)報;2005年04期
8 張英俐,劉弘 ,馬金剛;遺傳算法作曲系統(tǒng)研究[J];信息技術(shù)與信息化;2005年05期
9 丁發(fā)智;;淺談遺傳算法[J];烏魯木齊成人教育學(xué)院學(xué)報;2005年04期
10 李冰潔;;遺傳算法及其應(yīng)用實例[J];吉林工程技術(shù)師范學(xué)院學(xué)報;2005年12期
相關(guān)會議論文 前10條
1 陳家照;廖海濤;張中位;羅寅生;;一種改進的遺傳算法及其在路徑規(guī)劃中的應(yīng)用[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2009年
2 李國云;劉穎;薛梅;鄔志敏;;遺傳算法在高溫空冷冷凝器優(yōu)化設(shè)計中的應(yīng)用[A];第五屆全國制冷空調(diào)新技術(shù)研討會論文集[C];2008年
3 王志軍;李守春;張爽;;改進的遺傳算法在反演問題中的應(yīng)用[A];新世紀 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊)[C];2001年
4 任燕翔;姜立;劉連民;從滋慶;;改進遺傳算法在三維日照方案優(yōu)化中的應(yīng)用[A];工程三維模型與虛擬現(xiàn)實表現(xiàn)——第二屆工程建設(shè)計算機應(yīng)用創(chuàng)新論壇論文集[C];2009年
5 韓娟;;遺傳算法概述[A];第三屆河南省汽車工程科技學(xué)術(shù)研討會論文集[C];2006年
6 龐國仲;王元西;;基于遺傳算法控制步長的定性仿真方法[A];'2000系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2000年
7 張忠華;楊淑瑩;;基于遺傳算法的聚類設(shè)計[A];全國第二屆信號處理與應(yīng)用學(xué)術(shù)會議專刊[C];2008年
8 何翠紅;區(qū)益善;;遺傳算法及其在計算機編程中的應(yīng)用[A];1995年中國智能自動化學(xué)術(shù)會議暨智能自動化專業(yè)委員會成立大會論文集(下冊)[C];1995年
9 靳開巖;張乃堯;;幾種實用遺傳算法及其比較[A];1996年中國智能自動化學(xué)術(shù)會議論文集(下冊)[C];1996年
10 王宏剛;曾建潮;李志宏;;攝動遺傳算法[A];1996年中國智能自動化學(xué)術(shù)會議論文集(下冊)[C];1996年
相關(guān)重要報紙文章 前1條
1 林京;《神經(jīng)網(wǎng)絡(luò)和遺傳算法在水科學(xué)領(lǐng)域的應(yīng)用》將面市[N];中國水利報;2002年
相關(guān)博士學(xué)位論文 前10條
1 蔡美菊;交互式遺傳算法及其在隱性目標決策問題中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2015年
2 張士偉;三維聲學(xué)快速多極基本解法在機械噪聲預(yù)測中的應(yīng)用研究[D];沈陽工業(yè)大學(xué);2016年
3 高軍;無鉛焊料本構(gòu)模型及其參數(shù)識別方法研究[D];南京航空航天大學(xué);2015年
4 Amjad Mahmood;半監(jiān)督進化集成及其在網(wǎng)絡(luò)視頻分類中的應(yīng)用[D];西南交通大學(xué);2015年
5 周輝仁;遞階遺傳算法理論及其應(yīng)用研究[D];天津大學(xué);2008年
6 郝國生;交互式遺傳算法中用戶的認知規(guī)律及其應(yīng)用[D];中國礦業(yè)大學(xué);2009年
7 侯格賢;遺傳算法及其在跟蹤系統(tǒng)中的應(yīng)用研究[D];西安電子科技大學(xué);1998年
8 馬國田;遺傳算法及其在電磁工程中的應(yīng)用[D];西安電子科技大學(xué);1998年
9 唐文艷;結(jié)構(gòu)優(yōu)化中的遺傳算法研究和應(yīng)用[D];大連理工大學(xué);2002年
10 周激流;遺傳算法理論及其在水問題中應(yīng)用的研究[D];四川大學(xué);2000年
相關(guān)碩士學(xué)位論文 前10條
1 張英俐;基于遺傳算法的作曲系統(tǒng)研究[D];山東師范大學(xué);2006年
2 鐘海萍;原對偶遺傳算法與蟻群算法的一種融合算法[D];暨南大學(xué);2013年
3 李志添;模糊遺傳算法與資源優(yōu)化配置的預(yù)測控制[D];華南理工大學(xué);2015年
4 王琳琳;新型雙層液壓轎運車車廂的設(shè)計研究[D];上海工程技術(shù)大學(xué);2015年
5 李海全;基于遺傳算法的建筑體形系數(shù)及迎風(fēng)面積比優(yōu)化方法研究[D];華南理工大學(xué);2015年
6 彭騫;基于遺傳算法的山區(qū)高等級公路縱斷面智能優(yōu)化方法研究[D];昆明理工大學(xué);2015年
7 周玉林;基于小波分析和遺傳算法的配電網(wǎng)故障檢測[D];昆明理工大學(xué);2015年
8 郭頌;基于粗糙集和遺傳算法的數(shù)字管道生產(chǎn)管理系統(tǒng)研究[D];昆明理工大學(xué);2015年
9 吳南;數(shù)值逼近遺傳算法的研究應(yīng)用[D];華南理工大學(xué);2015年
10 于光帥;一類優(yōu)化算法的改進研究與應(yīng)用[D];渤海大學(xué);2015年
,本文編號:1949265
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1949265.html