雙容水箱系統(tǒng)的辨識(shí)與滑模變結(jié)構(gòu)控制
本文選題:多容水箱系統(tǒng) + 滑模變結(jié)構(gòu)控制。 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:在現(xiàn)代化工業(yè)生產(chǎn)中,過(guò)程自動(dòng)控制起著非常重要的作用,液位控制技術(shù)廣泛應(yīng)用于過(guò)程工業(yè)。在實(shí)際生產(chǎn)中,液位控制的性能與整個(gè)裝備的生產(chǎn)安全、效益和成本直接相關(guān),為確保過(guò)程控制的安全性和平穩(wěn)性,開(kāi)發(fā)先進(jìn)的液位控制技術(shù)和策略具有重要意義。多容水箱系統(tǒng)是工業(yè)生產(chǎn)中許多復(fù)雜控制系統(tǒng)的原型,是過(guò)程控制中的典型對(duì)象,也是控制算法驗(yàn)證的平臺(tái)。多容水箱系統(tǒng)是典型的非線性系統(tǒng),本文根據(jù)機(jī)理建模推導(dǎo)了系統(tǒng)的數(shù)學(xué)模型,通過(guò)系統(tǒng)辨識(shí)方法得到系統(tǒng)線性化模型參數(shù)以及非線性辨識(shí)法得到非線性模型參數(shù),為后續(xù)控制器的設(shè)計(jì)奠定了基礎(chǔ);W兘Y(jié)構(gòu)控制(SMC)作為一種處理具有不確定性系統(tǒng)的有效方法,具有響應(yīng)快、對(duì)系統(tǒng)參數(shù)變化以及外部擾動(dòng)不敏感、控制器結(jié)構(gòu)簡(jiǎn)單等優(yōu)點(diǎn),在液位控制系統(tǒng)中得到了廣泛的應(yīng)用。然而,滑模變結(jié)構(gòu)控制存在抖振的缺點(diǎn),為了降低抖振改善系統(tǒng)性能,引入了“準(zhǔn)滑動(dòng)模態(tài)”的概念,即基于邊界層的滑模變結(jié)構(gòu)控制。設(shè)計(jì)了單容水箱系統(tǒng)和雙容水箱系統(tǒng)一般滑模變結(jié)構(gòu)控制器和邊界層的滑模變結(jié)構(gòu)控制器,并利用Lyapunov函數(shù)證明了所設(shè)計(jì)控制器的穩(wěn)定性,仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了該方法的有效性。邊界層的滑模變結(jié)構(gòu)控制可以有效減弱抖振,但這是以增大跟蹤誤差為代價(jià)的,通過(guò)在滑模面中引入積分作用可以提高控制精度,但同時(shí)也導(dǎo)致瞬態(tài)響應(yīng)超調(diào)大,時(shí)間長(zhǎng)的缺點(diǎn)。采用具有“小誤差放大,大誤差飽和”功能的光滑非線性函數(shù)設(shè)計(jì)了一種非線性積分滑模變結(jié)構(gòu)控制器,控制器的設(shè)計(jì)考慮了輸入受限的影響,可以保證系統(tǒng)的輸入限制在一定范圍內(nèi),利用Lyapunov函數(shù)證明了所設(shè)計(jì)控制器的穩(wěn)定性。該控制器比具有積分作用的常規(guī)SMC改進(jìn)了瞬態(tài)性能,并且還能夠保持傳統(tǒng)SMC的期望屬性,穩(wěn)定調(diào)節(jié),有效減弱抖振,非線性積分SMC相比條件積分SMC,調(diào)節(jié)時(shí)間更短,穩(wěn)態(tài)誤差更小,具有更好的性能。考慮輸入受限情況時(shí)系統(tǒng)的動(dòng)態(tài)性能沒(méi)有降低。最后,提出了一種基于NN-SANARX模型的辨識(shí)與控制方法,這種方法的優(yōu)點(diǎn)是無(wú)需對(duì)象的數(shù)學(xué)模型,只需通過(guò)實(shí)際對(duì)象的輸入輸出數(shù)據(jù),利用神經(jīng)網(wǎng)絡(luò)模型辨識(shí)對(duì)象模型,進(jìn)而利用動(dòng)態(tài)輸出反饋線性化方法設(shè)計(jì)基于神經(jīng)網(wǎng)絡(luò)辨識(shí)模型的控制器,實(shí)驗(yàn)結(jié)果表明了該方法的有效性。這種方法對(duì)于未知模型的對(duì)象是一種有效控制方法。
[Abstract]:Automatic process control plays an important role in modern industrial production, and liquid level control technology is widely used in process industry. In actual production, the performance of liquid level control is directly related to the production safety, benefit and cost of the whole equipment. In order to ensure the safety and stability of process control, it is of great significance to develop advanced level control technology and strategy. Multi-tank system is a prototype of many complex control systems in industrial production. It is a typical object in process control and a platform for verification of control algorithms. The multi-tank system is a typical nonlinear system. In this paper, the mathematical model of the system is derived according to the mechanism model, and the parameters of the system linearization model and the nonlinear identification method are obtained by the system identification method. It lays a foundation for the design of subsequent controller. Sliding mode variable structure control (SMC), as an effective method for dealing with uncertain systems, has the advantages of fast response, insensitivity to system parameters and external disturbances, simple controller structure, and so on. It is widely used in liquid level control system. However, sliding mode variable structure control has the disadvantage of buffeting. In order to reduce chattering and improve system performance, the concept of "quasi-sliding mode" is introduced, that is, sliding mode variable structure control based on boundary layer. The general sliding mode variable structure controller and the sliding mode variable structure controller of the boundary layer are designed for the single water tank system and the double water tank system. The stability of the designed controller is proved by using the Lyapunov function. Simulation and experimental results show the effectiveness of the proposed method. The sliding mode variable structure control in the boundary layer can reduce the chattering effectively, but this is at the cost of increasing the tracking error. The control accuracy can be improved by introducing the integral action in the sliding mode surface, but the transient response is overshoot at the same time. The drawback of a long time. A nonlinear integral sliding mode variable structure controller is designed by using a smooth nonlinear function with the function of "small error amplification and large error saturation". The design of the controller takes into account the effect of input constraints. The input of the system is limited to a certain range, and the stability of the designed controller is proved by using the Lyapunov function. The controller improves the transient performance compared with the conventional SMC with integral effect, and can maintain the expected properties of traditional SMC, stabilize the adjustment, effectively reduce the buffeting. The nonlinear integral SMC has shorter adjusting time than the conditional integral SMC. The steady-state error is smaller and has better performance. The dynamic performance of the system does not decrease when the input constraints are considered. Finally, a method of identification and control based on NN-SANARX model is proposed. The advantage of this method is that it does not need the mathematical model of the object, but only by the input and output data of the actual object, and the neural network model is used to identify the object model. Then the dynamic output feedback linearization method is used to design the controller based on neural network identification model. The experimental results show the effectiveness of the method. This method is an effective control method for the object of unknown model.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 LI DongJuan;;Adaptive neural network control for a class of continuous stirred tank reactor systems[J];Science China(Information Sciences);2014年10期
2 穆效江;陳陽(yáng)舟;;滑模變結(jié)構(gòu)控制理論研究綜述[J];控制工程;2007年S2期
3 劉金琨;孫富春;;滑模變結(jié)構(gòu)控制理論及其算法研究與進(jìn)展[J];控制理論與應(yīng)用;2007年03期
相關(guān)碩士學(xué)位論文 前6條
1 侯成玉;四容系統(tǒng)實(shí)驗(yàn)裝置設(shè)計(jì)及算法研究[D];吉林大學(xué);2016年
2 李陽(yáng);基于自適應(yīng)模糊PID控制的多容水箱的液位控制[D];江蘇科技大學(xué);2016年
3 孫雷;基于參數(shù)自整定的模糊PID控制在多容水箱系統(tǒng)中的應(yīng)用[D];哈爾濱理工大學(xué);2015年
4 武貴洲;基于PID神經(jīng)網(wǎng)絡(luò)算法在多容水箱控制策略的研究[D];哈爾濱理工大學(xué);2015年
5 余杉鈺;多容水箱小波神經(jīng)網(wǎng)絡(luò)廣義預(yù)測(cè)控制[D];哈爾濱理工大學(xué);2014年
6 楊旭;多容水箱液位模糊控制系統(tǒng)的設(shè)計(jì)與研究[D];沈陽(yáng)建筑大學(xué);2012年
,本文編號(hào):1947947
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1947947.html