天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于改進深度置信網(wǎng)絡的大棚冬棗病蟲害預測模型

發(fā)布時間:2018-05-28 10:35

  本文選題:病害 + 預測 ; 參考:《農(nóng)業(yè)工程學報》2017年19期


【摘要】:導致冬棗病蟲害發(fā)生的原因很多而且很復雜,利用傳統(tǒng)的數(shù)學方法和神經(jīng)網(wǎng)絡(neural network,NN)很難建立正確的病蟲害預測模型。由于典型的深度置信網(wǎng)絡(deep belief network,DBN)的各層之間缺乏有監(jiān)督訓練,使得網(wǎng)絡誤差逐層向上傳遞,降低了預測模型的預測率。針對這些問題,引入冬棗病蟲害的先驗信息,提出一種基于環(huán)境信息和改進DBN的冬棗病蟲害預測模型。在該模型中,通過無監(jiān)督訓練和有監(jiān)督微調(diào)從冬棗生長的環(huán)境信息序列中獲取可表征冬棗病蟲害發(fā)生的深層特征的隱層參數(shù),并形成新的特征集,然后在預測模型的頂層通過一個后向傳播神經(jīng)網(wǎng)絡(back propagation neural network,BPNN)進行病蟲害預測。從2014—2017年的4 a時間內(nèi),利用農(nóng)業(yè)物聯(lián)網(wǎng)傳感器采集30個大棚冬棗常見的2種蟲害和3種病害發(fā)生的環(huán)境信息序列6 000多條,由此驗證所提出的預測模型,平均預測正確率高達84.05%。與基于強模糊支持向量機、改進型NN和BPNN的3種病蟲害預測模型進行了試驗比較,預測正確率提高了20多個百分點。試驗結(jié)果表明,該模型極大提高了大棚冬棗病蟲害的預測正確率。該研究可為大棚冬棗病蟲害預測提供技術(shù)參考。
[Abstract]:There are many and complicated reasons for the occurrence of diseases and insect pests in winter jujube. It is difficult to establish a correct prediction model of diseases and pests by using traditional mathematical methods and neural network (NN). Due to the lack of supervised training among the layers of the typical deep belief network, the network errors are transmitted upward, and the prediction rate of the prediction model is reduced. In order to solve these problems, a prediction model of winter jujube disease and insect pests based on environmental information and improved DBN was proposed by introducing the prior information of winter jujube pests and diseases. In this model, the hidden layer parameters can be obtained from the environmental information sequence of Dongzao jujube growth by unsupervised training and supervised fine-tuning, and a new feature set is formed. The disease and insect pests are predicted at the top of the prediction model through a back propagation neural network (BPNN). In the period of 2014-2017, more than 6 000 environmental information sequences of two common pests and three diseases of winter jujube in greenhouse were collected by using agricultural Internet of things sensors, and the proposed prediction model was verified. The average prediction accuracy was 84.05%. Compared with three forecasting models based on strong fuzzy support vector machine, improved NN and BPNN, the accuracy of prediction is increased by more than 20 percentage points. The experimental results show that the prediction accuracy of winter jujube diseases and insect pests in greenhouse is greatly improved by this model. This study can provide technical reference for prediction of diseases and pests of winter jujube in greenhouse.
【作者單位】: 西京學院信息工程學院;
【基金】:國家自然科學基金項目(61473237) 陜西省自然科學基礎(chǔ)研究計劃(2016GY-141)
【分類號】:S436.65;TP18

【相似文獻】

相關(guān)期刊論文 前10條

1 吳功振;;四川棉花枯萎病發(fā)生流行與有關(guān)氣候因子預測模型[J];四川農(nóng)業(yè)科技;1984年02期

2 王建平;;倍樹感病指數(shù)預測模型的研究[J];貴州林業(yè)科技;1989年02期

3 趙曰豐,劉彥;人參黑斑病流行發(fā)生期及參籽產(chǎn)量預測模型的研究[J];植物病理學報;1991年03期

4 趙日豐;劉彥;;人參黑斑病流行發(fā)生期及參籽產(chǎn)量預測模型的研究[J];特產(chǎn)研究;1991年02期

5 許渭根;稻縱卷葉螟主害峰預測模型可信度論證[J];昆蟲知識;1993年02期

6 劉剛;;河北省又取得一批農(nóng)藥植保類科研成果[J];農(nóng)藥市場信息;2013年08期

7 王正輝;孫會霞;郭慶;;集成預測模型預測我國農(nóng)業(yè)自然災害的探討[J];浙江農(nóng)業(yè)科學;2013年11期

8 王華;小麥吸漿蟲發(fā)生規(guī)律與預測模型[J];甘肅科技;1996年S1期

9 荀守華;灰色預測模型GM(1,1)在森林病蟲害預測中的應用[J];山東林業(yè)科技;1991年03期

10 李春華;李寧;孟志強;;基于灰色預測模型的江蘇省糧食災損量估計[J];自然災害學報;2008年01期

相關(guān)會議論文 前1條

1 孫學浩;孫惠合;錢平海;;宿州市秋冬連旱發(fā)生年度的G-ANN預測模型[A];第26屆中國氣象學會年會農(nóng)業(yè)氣象防災減災與糧食安全分會場論文集[C];2009年

相關(guān)碩士學位論文 前1條

1 郭慶;我國農(nóng)業(yè)災害預測模型的研究[D];武漢理工大學;2009年

,

本文編號:1946374

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1946374.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6840f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com