Pareto熵雞群算法求解多目標(biāo)柔性作業(yè)車間調(diào)度問題
本文選題:多目標(biāo)柔性作業(yè)車間調(diào)度 + Pareto熵 ; 參考:《小型微型計(jì)算機(jī)系統(tǒng)》2017年12期
【摘要】:針對多目標(biāo)柔性作業(yè)車間調(diào)度問題,提出基于Pareto熵的雞群算法.首先,建立了多目標(biāo)柔性作業(yè)車間調(diào)度模型,優(yōu)化目標(biāo)為最大完工時(shí)間、最大機(jī)器負(fù)荷和所有機(jī)器總負(fù)荷.其次,將Pareto熵的概念引入雞群算法,通過計(jì)算Pareto前端的熵值和差熵值判斷目前種群的進(jìn)化狀態(tài),動(dòng)態(tài)調(diào)節(jié)慣性權(quán)重,使得調(diào)節(jié)過程具有針對性和目的性,同時(shí)為了避免算法陷入局部最優(yōu),加入基于Pareto熵的精英學(xué)習(xí)策略作為局部擾動(dòng)策略,精英學(xué)習(xí)率步長可根據(jù)Pareto差熵和進(jìn)化狀態(tài)動(dòng)態(tài)調(diào)節(jié),從而形成一個(gè)閉環(huán)調(diào)節(jié)的進(jìn)化過程.最后,對多目標(biāo)柔性作業(yè)車間調(diào)度的經(jīng)典算例進(jìn)行求解,并與相關(guān)算法對比,仿真實(shí)驗(yàn)證明所提算法在收斂精度和機(jī)器分配均勻度方面具有明顯優(yōu)勢.
[Abstract]:Aiming at the multi-objective flexible job shop scheduling problem, a chicken swarm algorithm based on Pareto entropy is proposed. Firstly, a multi-objective flexible job shop scheduling model is established. The optimal objectives are maximum completion time, maximum machine load and total machine load. Secondly, the concept of Pareto entropy is introduced into the chicken population algorithm. By calculating the entropy and difference entropy of the Pareto front end, the evolutionary state of the current population is judged, and the inertia weight is dynamically adjusted, which makes the adjustment process have pertinence and purpose. In order to avoid the algorithm falling into local optimum, the elite learning strategy based on Pareto entropy is added as the local disturbance strategy. The step size of elite learning rate can be dynamically adjusted according to Pareto difference entropy and evolutionary state, thus forming a closed-loop evolutionary process. Finally, the classical example of multi-objective flexible job shop scheduling is solved, and compared with the related algorithms, the simulation results show that the proposed algorithm has obvious advantages in convergence accuracy and machine distribution uniformity.
【作者單位】: 江南大學(xué)輕工過程先進(jìn)控制教育部重點(diǎn)實(shí)驗(yàn)室;
【基金】:國家自然科學(xué)基金項(xiàng)目(61572237,61573167)資助
【分類號】:TB497;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 古瑩奎,黃洪鐘,吳衛(wèi)東;基于Pareto解的交互式模糊優(yōu)化及其應(yīng)用[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年08期
2 邢宇飛;王成恩;柳強(qiáng);;基于Pareto解集蟻群算法的拆卸序列規(guī)劃[J];機(jī)械工程學(xué)報(bào);2012年09期
3 何國偉;角淑媛;;Pareto分布及其在可靠性設(shè)計(jì)資源分配等問題中的應(yīng)用[J];質(zhì)量與可靠性;2012年03期
4 朱學(xué)軍,攀登,王安麟,張惠僑,葉慶泰;混合變量多目標(biāo)優(yōu)化設(shè)計(jì)的Pareto遺傳算法實(shí)現(xiàn)[J];上海交通大學(xué)學(xué)報(bào);2000年03期
5 毛松;師義民;孫天宇;;Pareto產(chǎn)品可靠性試驗(yàn)最少試件數(shù)的確定[J];機(jī)械強(qiáng)度;2013年03期
6 管迪;陳樂生;;多目標(biāo)Pareto遺傳算法中處理約束條件的方法[J];安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年06期
7 郭相坤;王曉靜;許德平;王曉玲;;間歇自由基聚合反應(yīng)器的Pareto蟻群優(yōu)化(英文)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2009年06期
相關(guān)博士學(xué)位論文 前1條
1 邢宇飛;復(fù)雜產(chǎn)品拆卸序列規(guī)劃技術(shù)研究[D];東北大學(xué);2012年
,本文編號:1941317
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1941317.html