PMSM伺服系統(tǒng)模糊PI自適應(yīng)控制策略研究
本文選題:永磁同步電機(jī) + 矢量控制。 參考:《江西理工大學(xué)》2017年碩士論文
【摘要】:PMSM伺服系統(tǒng)存在著非線性,參數(shù)時(shí)變,負(fù)載擾動(dòng)等問題;面對這些問題,傳統(tǒng)的PI控制策略往往不能達(dá)到理想的參數(shù)跟蹤及負(fù)載抗擾性能,表現(xiàn)出了很大程度上的局限性。針對這類問題,本文設(shè)計(jì)一種解決方案,構(gòu)思步驟梳理如下:首先,立足于對PMSM在3種坐標(biāo)系中建立的數(shù)學(xué)模型進(jìn)行分析推導(dǎo),分別得出PMSM的電磁方程,選用(28)0di矢量控制方式,針對PMSM伺服系統(tǒng)的速度環(huán)控制,通過對專家經(jīng)驗(yàn)知識(shí)的提煉,獲取模糊控制規(guī)則,設(shè)計(jì)了一種融合模糊規(guī)則的PI控制器,以期達(dá)到擺脫對受控對象數(shù)學(xué)模型精度的依賴、提高系統(tǒng)對負(fù)載變化的追蹤能力以及對參數(shù)變化適應(yīng)能力的目的。通過Matlab/Simulink平臺(tái)構(gòu)建采用SVPWM調(diào)制方式的系統(tǒng)模型,給定較低的轉(zhuǎn)速啟動(dòng),通過仿真驗(yàn)證設(shè)想的可行性,結(jié)果顯示:在較低的給定轉(zhuǎn)速下,模糊PI控制器可以有效地消除超調(diào),提高系統(tǒng)的魯棒性,增強(qiáng)系統(tǒng)對負(fù)載變動(dòng)的適應(yīng)能力。其次,在構(gòu)建模糊PI控制器的基礎(chǔ)上引入自適應(yīng)機(jī)制,更進(jìn)一層地增強(qiáng)控制器的動(dòng)靜態(tài)性能,克服控制器處于較高給定轉(zhuǎn)速情況下性能表現(xiàn)受限的不足;立足于原模糊PI控制器構(gòu)建自適應(yīng)模塊,另取新的規(guī)則庫使其輸出不同調(diào)整參數(shù)。給定較高轉(zhuǎn)速啟動(dòng),再次通過仿真檢驗(yàn)該方案的效果,最后得出結(jié)論:引入自適應(yīng)的模糊PI控制器在系統(tǒng)啟動(dòng)階段能夠減小超調(diào)量,使系統(tǒng)進(jìn)入穩(wěn)態(tài)更加平穩(wěn),突加負(fù)載時(shí)可以令系統(tǒng)更快回復(fù)到穩(wěn)態(tài);最終使得系統(tǒng)的總體性能得到顯著提升。最后,在原系統(tǒng)中添加位置環(huán),構(gòu)建三閉環(huán)伺服系統(tǒng),討論自適應(yīng)模糊PI算法在位置環(huán)中的應(yīng)用,保持P調(diào)節(jié)量主導(dǎo)地位不變,立足于減小I參數(shù)輸出,從而獲取新的規(guī)則庫;經(jīng)過仿真實(shí)驗(yàn),結(jié)果表明:自適應(yīng)模糊算法在位置環(huán)的運(yùn)用,可以有效地提高系統(tǒng)對轉(zhuǎn)子位置的跟蹤能力,增強(qiáng)系統(tǒng)抗擾動(dòng)性能。
[Abstract]:PMSM servo system has many problems, such as nonlinearity, time-varying parameters, load disturbance and so on. In the face of these problems, the traditional Pi control strategy often can not achieve the ideal parameter tracking and load immunity performance, showing a great deal of limitations. Aiming at this kind of problem, this paper designs a kind of solution, the conception steps are summarized as follows: firstly, based on the analysis and derivation of the mathematical model established by PMSM in three kinds of coordinate systems, the electromagnetic equation of PMSM is obtained, and the vector control mode of PMSM is chosen. Aiming at the speed loop control of PMSM servo system, the fuzzy control rules are obtained by refining the expert experience knowledge, and a Pi controller combining fuzzy rules is designed in order to get rid of the dependence on the precision of the mathematical model of the controlled object. The purpose of improving the system's ability to track load change and adapt to parameter change. The system model of SVPWM modulation is constructed by using Matlab/Simulink platform, and given a lower speed to start. The feasibility of the assumption is verified by simulation. The results show that the fuzzy Pi controller can effectively eliminate overshoot at a given speed. The robustness of the system is improved and the adaptability of the system to load changes is enhanced. Secondly, based on the fuzzy Pi controller, the adaptive mechanism is introduced to enhance the dynamic and static performance of the controller. Based on the original fuzzy Pi controller, an adaptive module is constructed, and a new rule base is taken to output different adjustment parameters. Given a higher speed to start, the effect of the scheme is verified by simulation again. Finally, it is concluded that the introduction of adaptive fuzzy Pi controller can reduce the overshoot in the starting stage of the system, and make the system stable and stable. Sudden loading can make the system return to steady state more quickly, and improve the overall performance of the system significantly. Finally, the position loop is added to the original system, and the three-loop servo system is constructed. The application of the adaptive fuzzy Pi algorithm in the position loop is discussed. The simulation results show that the application of the adaptive fuzzy algorithm in the position loop can effectively improve the tracking ability of the system to the rotor position and enhance the anti-disturbance performance of the system.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273;TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉德住;;基于BP神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)控制[J];微電機(jī);2016年11期
2 周炎;施偉鋒;張威;;基于RBF神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)矢量控制系統(tǒng)[J];船電技術(shù);2016年08期
3 周佳;盧少武;周鳳星;;基于BP神經(jīng)網(wǎng)絡(luò)的伺服速度控制參數(shù)自整定研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2016年07期
4 彭祖群;劉春香;肖雄;何蘇利;;基于人工神經(jīng)網(wǎng)絡(luò)SVPWM的控制策略及諧波分析[J];工業(yè)控制計(jì)算機(jī);2016年05期
5 劉俊鋒;楊文煥;陳斌;;基于滑模變結(jié)構(gòu)電流環(huán)的PMSM矢量控制[J];信息技術(shù);2015年11期
6 夏加寬;于浩;;SPWM和SVPWM調(diào)制策略對電動(dòng)機(jī)振動(dòng)噪聲影響的實(shí)驗(yàn)研究[J];電氣技術(shù);2015年07期
7 朱江;尹泉;羅慧;王慶義;;自調(diào)整模糊控制器在永磁同步電機(jī)矢量控制中的應(yīng)用[J];變頻器世界;2013年06期
8 曾U喺,
本文編號(hào):1907461
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1907461.html