基于GF-1影像的冬小麥和油菜種植信息提取
發(fā)布時間:2018-05-15 07:10
本文選題:GF- + 農(nóng)作物種植信息; 參考:《遙感技術與應用》2017年04期
【摘要】:高分(GF)系列衛(wèi)星的相繼發(fā)射為國產(chǎn)高分辨率遙感數(shù)據(jù)的應用創(chuàng)造了新的機遇。為探索GF數(shù)據(jù)在中小尺度農(nóng)作物遙感監(jiān)測領域中的可行性和建立相適應的技術體系,以揚州市為例,運用決策樹模型和面向?qū)ο蠓诸惙椒?研究GF-1衛(wèi)星的寬視場(wide field of view,WFV)數(shù)據(jù)在農(nóng)作物種植信息提取中的可行性,并探索提高其提取精度的處理方法。結(jié)果表明:分區(qū)處理可以降低作物空間分布對種植區(qū)提取的不利影響;冬小麥總體精度為97%,Kappa系數(shù)為0.93;油菜總體精度為96%,Kappa系數(shù)為0.84。綜上所述,國產(chǎn)GF-1 WFV影像可以應用于農(nóng)作物種植信息的提取,并為糧區(qū)農(nóng)作物種植空間調(diào)整和優(yōu)化管理提供重要參考和決策支持。
[Abstract]:The successive launches of the GFG series of satellites have created a new opportunity for the application of domestic high resolution remote sensing data. In order to explore the feasibility of GF data in the field of remote sensing monitoring of small and medium scale crops and to establish a suitable technical system, taking Yangzhou City as an example, the decision tree model and object oriented classification method are used. This paper studies the feasibility of wide field of GF-1 satellite data in crop planting information extraction, and explores the processing methods to improve the precision of crop planting information extraction. The results showed that the subzone treatment could reduce the adverse effect of crop spatial distribution on the extraction of crops in growing area, the total precision of winter wheat was 97 kappa coefficient was 0.93, and the total precision of rapeseed was 96% Kappa coefficient was 0.84. To sum up, domestic GF-1 WFV images can be used to extract crop planting information, and provide important reference and decision support for crop planting space adjustment and optimal management in grain areas.
【作者單位】: 福建師范大學地理科學學院;中國科學院地理科學與資源研究所資源與環(huán)境信息系統(tǒng)國家重點實驗室;揚州市耕地質(zhì)量保護站;
【基金】:國家重大科技專項項目“新能源評估研究示范”課題(30-Y30B13-9003-14/16-04) 國家自然科學基金項目(41571158)
【分類號】:S512.11;S565.4;TP79
,
本文編號:1891492
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1891492.html
最近更新
教材專著