六自由度機械臂模塊化設(shè)計與運動控制的研究
本文選題:機械臂 + 模塊化結(jié)構(gòu)。 參考:《安徽工業(yè)大學》2017年碩士論文
【摘要】:機械臂在航天、醫(yī)療以及制造業(yè)中有著越來越廣泛的應(yīng)用,其代替人類執(zhí)行上述領(lǐng)域中的任務(wù)有著重要的意義,促進了這些領(lǐng)域的發(fā)展。在此背景下,本文設(shè)計研究了一種六自由度模塊化機械臂,從結(jié)構(gòu)設(shè)計和運動控制方面展開研究,主要內(nèi)容如下:首先針對操作空間、定位精度和負載等技術(shù)要求,同時滿足逆運動學有封閉解的條件,確定了機械臂的構(gòu)型,在總體方案設(shè)計的基礎(chǔ)上,基于模塊化設(shè)計思想設(shè)計了關(guān)節(jié)結(jié)構(gòu),然后進行了主要零部件的選型,最終完成了三維模型設(shè)計,并通過樣機制備驗證了結(jié)構(gòu)設(shè)計的合理性。針對本文機械臂的構(gòu)型,通過D-H法對正逆解進行了分析,基于矩陣逆乘的思路提出此類機械臂逆解的一般方法,得到了八組解析解,并給出了機械臂奇異位置的逆解處理方法,最后運用機器人工具箱驗證正逆解的正確性,為后續(xù)的軌跡規(guī)劃奠定了基礎(chǔ)。針對六自由度機械臂關(guān)節(jié)空間和笛卡爾空間的軌跡規(guī)劃問題,本文采用一種梯形運動規(guī)律,提出了點到點以及連續(xù)路徑的軌跡規(guī)劃方法,規(guī)劃結(jié)果顯示各關(guān)節(jié)角度變化曲線連續(xù)、平滑,保證了運動的平穩(wěn)性。最后根據(jù)六自由度機械臂的運動控制要求,采用工控機+運動控制卡的控制系統(tǒng)結(jié)構(gòu)搭建了系統(tǒng)硬件平臺,并設(shè)計了主要硬件的連接接口,從硬件層面保證系統(tǒng)的穩(wěn)定性和較高的控制精度。在分析系統(tǒng)基本控制功能的基礎(chǔ)上,先進行軟件整體框架的設(shè)計,然后分人機交互界面、運動控制功能和控制卡驅(qū)動三部分進行軟件開發(fā),保證了軟件功能的整體完備性,并且便于軟件后期的升級和維護。
[Abstract]:The robot arm is more and more widely used in aerospace, medical and manufacturing industries. It is of great significance to replace human beings in carrying out the tasks in these fields, and has promoted the development of these fields. In this context, a 6-DOF modular manipulator is designed and studied from the aspects of structure design and motion control. The main contents are as follows: firstly, aiming at the technical requirements of operation space, positioning accuracy and load, etc. At the same time, according to the condition of inverse kinematics with closed solution, the configuration of the manipulator is determined. On the basis of the overall scheme design, the joint structure is designed based on the modular design idea, and then the selection of the main parts is carried out. Finally, the 3D model design is completed, and the rationality of the structure design is verified by the prototype preparation. According to the configuration of the manipulator in this paper, the forward and inverse solutions are analyzed by D-H method. Based on the idea of matrix inverse multiplication, the general method of inverse solution of this kind of manipulator is proposed, and eight sets of analytical solutions are obtained, and the inverse solution method of the singular position of the manipulator is given. Finally, the robot toolbox is used to verify the correctness of the forward and inverse solutions, which lays a foundation for the subsequent trajectory planning. Aiming at the trajectory planning problem of joint space and Cartesian space of 6-DOF mechanical arm, a trapezoidal motion law is adopted in this paper, and a trajectory planning method of point-to-point and continuous path is proposed. The planning results show that the angle curve of each joint is continuous and smooth, which ensures the stability of motion. Finally, according to the motion control requirements of the six-degree-of-freedom manipulator, the system hardware platform is built using the control system structure of the IPC motion control card, and the connection interface of the main hardware is designed. The stability and control accuracy of the system are guaranteed from the hardware level. On the basis of analyzing the basic control function of the system, the design of the whole software frame is carried out first, and then the software is developed in three parts: the man-machine interface, the motion control function and the control card driver, which ensures the overall completeness of the software function. And easy to upgrade and maintain the software later.
【學位授予單位】:安徽工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP241
【參考文獻】
相關(guān)期刊論文 前10條
1 ;Rethink Robotics為Sawyer機器人配備開源軟件開發(fā)工具包[J];智能制造;2016年09期
2 翁馨;鄒瑛;;2016慕尼黑機器人展協(xié)作機器人調(diào)研報告[J];機器人技術(shù)與應(yīng)用;2016年04期
3 ;Rethink Robotics在全球推出Sawyer機器人[J];電腦與電信;2015年09期
4 ;優(yōu)傲機器人為李爾公司“及時”裝配[J];汽車工藝師;2015年02期
5 艾斯本·奧斯特加;;你的新同事——走出牢籠的機器人[J];辦公自動化;2014年15期
6 邱寧佳;隋振;李明哲;鄭承香;;六自由度機器人空間劃線軌跡規(guī)劃算法[J];吉林大學學報(工學版);2013年05期
7 王偉同;;中國人口紅利的經(jīng)濟增長“尾效”研究——兼論劉易斯拐點后的中國經(jīng)濟[J];財貿(mào)經(jīng)濟;2012年11期
8 徐揚生;閻鏡予;;機器人技術(shù)的新進展[J];集成技術(shù);2012年01期
9 孫英飛;羅愛華;;我國工業(yè)機器人發(fā)展研究[J];科學技術(shù)與工程;2012年12期
10 余曉流;劉進福;汪麗芳;王偉;王殿君;孫丹;;基于ADAMS的六自由度焊接機器人運動學分析及仿真[J];安徽工業(yè)大學學報(自然科學版);2012年01期
相關(guān)博士學位論文 前1條
1 王英石;冗余機器人的運動學及軌跡規(guī)劃的研究[D];南開大學;2014年
相關(guān)碩士學位論文 前9條
1 譚玉良;基于SCARA機器人的藥型罩自動化生產(chǎn)線關(guān)鍵技術(shù)研究[D];安徽工業(yè)大學;2015年
2 強歡;六自由度機械臂關(guān)節(jié)模塊化技術(shù)研究[D];北京理工大學;2015年
3 歐爽翔;六自由度焊接機器人本體結(jié)構(gòu)設(shè)計與開發(fā)[D];廣西大學;2014年
4 耿磊;六自由度工業(yè)機器人的建模與仿真研究[D];東北大學;2013年
5 王羅羅;輕型機械臂的結(jié)構(gòu)設(shè)計及控制研究[D];哈爾濱工業(yè)大學;2009年
6 張君;“外骨骼”設(shè)計研究及液壓伺服系統(tǒng)仿真[D];江西理工大學;2009年
7 馬江;六自由度機械臂控制系統(tǒng)設(shè)計與運動學仿真[D];北京工業(yè)大學;2009年
8 唐和業(yè);一種兩自由度并聯(lián)機械手教學演示平臺數(shù)控系統(tǒng)的研究與開發(fā)[D];天津大學;2007年
9 張祥;高速輕型并聯(lián)機械手控制方法研究[D];天津大學;2005年
,本文編號:1890446
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1890446.html