基于叉指電極的氣體傳感器的特性及加工研究
本文選題:叉指電極MEMS + 氣體傳感器; 參考:《成都理工大學(xué)》2017年碩士論文
【摘要】:當下,環(huán)境污染情況愈演愈烈,特別是一些有毒、有害氣體無時無刻不威脅著我們的健康。那么如何精準、快速、便利地檢測到諸如此類的氣體,就變成了一項十分艱巨而又極其重要的工作。當然,目前檢測手段多樣,但半導(dǎo)體氣敏傳感器憑借其體積小、恢復(fù)時間短以及重復(fù)使用性好等諸多優(yōu)點,而受到廣泛關(guān)注。不盡如人意的是,目前成品化的半導(dǎo)體氣體傳感器仍有些欠缺,如選擇性差、響應(yīng)度低、工作溫度偏高等,這就使得半導(dǎo)體氣體傳感器的應(yīng)用拓展舉步維艱;诖,本文將半導(dǎo)體氣體傳感技術(shù)與MEMS制造工藝進行有效聯(lián)合,制備叉指電極傳感器,并利用氨氣、二氧化氮、甲醛以及丙酮檢測了基于叉指電極的氣體傳感器的氣敏特性。實驗結(jié)果表明,本文中制備的基于叉指電極的氣體傳感器,氣體響應(yīng)靈敏度較高、響應(yīng)恢復(fù)時間較快、工作溫度也較低。具體內(nèi)容如下:首先,本文闡述了叉指電極氣體傳感器的基本原理,并且建立了叉指電極極間電阻的計算模型,分別用精確的計算方法以及忽略尖端電場,計算了其極間電阻。通過分析得到:用叉指電極制成的傳感器,當叉指的寬長比越小,叉指的密度越大,所制備的叉指電極的極間電阻就會越小,用它制成的傳感器的靈敏度和響應(yīng)速度就會越高;诖,結(jié)合實驗室現(xiàn)有條件,設(shè)置了叉指電極的各個參數(shù),其中:a為50μm,b為50μm,c為150μm,d為20000μm。長寬比選擇400,叉指電極對數(shù)一共50個周期。其次,選擇硅作為叉指電極的襯底材料,通過硅片清洗、二氧化硅生長、紫外光刻等工藝,成功制備了叉指電極傳感器,并將三氧化鎢漿料與叉指電極進行完美整合,制備出了叉指電極氣敏元件。最后,將該叉指電極傳感器對4種常見污染物氣體的氣敏特性進行了檢測。實驗結(jié)果表明:在100ppm氨氣中,工作溫度為200℃時,叉指電極傳感器擁有最高靈敏度,達43.1,響應(yīng)恢復(fù)時間大約為5s;在100ppm二氧化氮氣體中,最佳工作溫度為250℃,此時靈敏度達94.9,響應(yīng)恢復(fù)時間大約為4s。在100ppm的甲醛與丙酮環(huán)境中,工作溫度為50℃的叉指電極傳感器,靈敏度分別達到16.8與4.8。工作溫度的升高,對甲醛的靈敏度影響較小,而對丙酮的影響很大。在響應(yīng)-恢復(fù)時間方面,在50℃測量甲醛時,其響應(yīng)和恢復(fù)時間各為5s、26s,在同等前提下,丙酮的響應(yīng)和恢復(fù)時間則各為5s、24s。
[Abstract]:At the moment, the environmental pollution is becoming more and more intense, especially some poisonous, harmful gases that threaten our health all the time. Then how to accurately, quickly and conveniently detect such gases has become a very arduous and extremely important work. Because of its small size, short recovery time and good reusability, it has attracted wide attention. It is not satisfactory that the finished semiconductor gas sensors are still lacking, such as poor selectivity, low response and high working temperature, which makes the application of semi conductor gas sensors difficult. Based on this, In this paper, the semiconductor gas sensing technology is effectively combined with the MEMS manufacturing process to prepare the cross finger electrode sensor, and the gas sensing characteristics of the gas sensor based on the cross finger electrode are detected by the ammonia, nitrogen dioxide, formaldehyde and acetone. The experimental results show that the gas sensor based on the interdigital electrode and the gas response spirit in this paper have been prepared in this paper. The sensitivity is higher, the response time is faster and the working temperature is low. The main contents are as follows: firstly, the basic principle of the interdigital electrode gas sensor is expounded, and the calculation model of the interdigital resistance of the interdigital electrode is set up, and the interpolar resistance is calculated with the accurate calculation method and the neglecting the tip electric field. The sensor made with a cross finger electrode, when the width of the finger is smaller, the greater the density of the finger, the smaller the resistance of the interdigital electrode will be, the higher the sensitivity and response speed of the sensor made with it. Based on this, the parameters of the interdigital electrode are set up in the laboratory conditions, including a 50 m, B is 50 M, C is 150 mu m, D is 20000 M. long width ratio selection 400, and the cross finger electrode is 50 cycles. Secondly, silicon is selected as the substrate material of the cross finger electrode. Through silicon wafer cleaning, silicon dioxide growth and UV photolithography, the cross finger electrode sensor is successfully prepared, and the tungsten trioxide size and the cross finger electrode are perfectly integrated and prepared. At last, the cross finger electrode sensor was used to detect the gas sensitivity of 4 kinds of common pollutants. The experimental results showed that when the working temperature was 200, the cross finger electrode sensor had the highest sensitivity of 43.1, the response time was about 5S, and in the 100ppm nitrogen dioxide gas. The good working temperature is 250 C, at this time the sensitivity is 94.9, the response time is about 4S. in the 100ppm formaldehyde and acetone environment, the working temperature is 50 degrees centigrade, the sensitivity is up to 16.8 and 4.8., and the sensitivity of formaldehyde is little, but the effect on acetone is great. In response recovery time In terms of formaldehyde and reaction time at 50 C, the response time and recovery time were 5S, 26S. Under the same conditions, acetone response and recovery time were 5S, 24s. respectively.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻】
相關(guān)期刊論文 前10條
1 許萬里;;一種叉指結(jié)構(gòu)電極間分布電阻的計算方法[J];江南大學(xué)學(xué)報(自然科學(xué)版);2012年03期
2 姚善卓;張玲玲;李友杰;;氨氣來源及氨氣傳感器應(yīng)用[J];廣州化工;2011年02期
3 鄭建旭;管永川;冉慧麗;姜心;魏曉鴿;蔣登高;;氨氣傳感器的應(yīng)用和研究進展[J];化工新型材料;2010年02期
4 王浩旭;謝立強;吳學(xué)忠;李圣怡;;石英濕法腐蝕及側(cè)壁晶棱修平工藝研究[J];傳感技術(shù)學(xué)報;2009年12期
5 楊英;陳向東;邱秀榮;;一種新型三維敏感氣體傳感器的研究[J];傳感器與微系統(tǒng);2009年10期
6 張興磊;花榕;陳雙喜;周躍明;陳煥文;;低濃度氫氣檢測方法研究進展[J];分析儀器;2009年05期
7 謝望;;氣體傳感器技術(shù)的現(xiàn)狀和發(fā)展趨勢[J];儀器儀表用戶;2006年05期
8 曹曄,張光友;肼類推進劑氣體傳感技術(shù)研究進展[J];導(dǎo)彈與航天運載技術(shù);2004年02期
9 黃志奇,杜平安,盧涼;微機電系統(tǒng)科學(xué)與技術(shù)的現(xiàn)狀研究[J];機械設(shè)計;2003年11期
10 田林芹,張愛梅;動力學(xué)光度法測定痕量甲醛[J];分析測試學(xué)報;2003年05期
相關(guān)碩士學(xué)位論文 前3條
1 張琳;基于叉指電極的MEMS環(huán)境監(jiān)測傳感器關(guān)鍵技術(shù)研究[D];湘潭大學(xué);2013年
2 周洪林;聲表面波甲醛氣體傳感器研究[D];大連理工大學(xué);2007年
3 何茂先;微結(jié)構(gòu)氣體傳感器設(shè)計中的關(guān)鍵技術(shù)研究[D];南京工業(yè)大學(xué);2006年
,本文編號:1882103
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1882103.html