一類間歇過程基于數(shù)據(jù)驅(qū)動的過程監(jiān)控方法研究
本文選題:κ近鄰 + 間歇過程; 參考:《杭州電子科技大學(xué)》2017年碩士論文
【摘要】:間歇過程作為現(xiàn)代工業(yè)生產(chǎn)的一種重要方式,已經(jīng)被廣泛地應(yīng)用于染料、食品、制藥等眾多領(lǐng)域。目前,將過程監(jiān)控技術(shù)應(yīng)用到間歇過程中,建立監(jiān)測系統(tǒng)對間歇過程進行異常檢測,已成為工業(yè)控制領(lǐng)域的一個重要研究方向。本文基于κ近鄰方法,開展有關(guān)間歇過程實時監(jiān)測的研究,具體的研究內(nèi)容如下:(1)提出一種基于κ近鄰的實時監(jiān)測間歇過程方法。該方法首先將間歇過程的歷史數(shù)據(jù)沿著時間軸切割成多個時間片數(shù)據(jù);然后,利用κ近鄰方法基于各個時間片數(shù)據(jù)建立對應(yīng)的單時刻模型,并基于這些模型實時地監(jiān)測間歇過程。(2)提出一種提高過程監(jiān)控實時性的快速κ近鄰方法;贓2LSH加速κ近鄰算法的近鄰搜索過程,利用E2LSH算法從訓(xùn)練數(shù)據(jù)集中剔除與當前查詢樣本差異較大的樣本,在剩余樣本中建立κ近鄰監(jiān)控模型進行異常檢測。(3)提出一種適合過程多時段特性的κ近鄰實時監(jiān)測方法。首先,基于隨機投影和K-均值聚類提出一種時段劃分方法,該方法基于隨機投影后的測量數(shù)據(jù),利用K-均值聚類算法將間歇過程的整個生產(chǎn)周期劃分成多個子時段;然后,利用κ近鄰方法建立子時段監(jiān)控模型實時地監(jiān)測間歇過程。
[Abstract]:As an important way of modern industrial production, batch process has been widely used in many fields, such as dyes, food, pharmacy and so on. At present, it has become an important research direction in the field of industrial control to apply process monitoring technology to batch process and to establish monitoring system to detect the anomaly of batch process. In this paper, the real-time monitoring of batch processes is carried out based on 魏 nearest neighbor method. The specific research contents are as follows: 1) A real-time monitoring method for batch processes based on 魏 nearest neighbor is proposed. In this method, the historical data of the batch process are first cut along the time axis into a plurality of time slice data, and then the corresponding single time model is established based on each time slice data by using the 魏 nearest neighbor method. Based on these models, a fast 魏 nearest neighbor method is proposed to improve the real-time performance of process monitoring. Based on E2LSH to speed up the nearest neighbor search process of 魏 nearest neighbor algorithm, the E2LSH algorithm is used to remove samples from the training dataset that are quite different from the current query samples. In this paper, a 魏 nearest neighbor monitoring model is established for anomaly detection in the remaining samples. (3) A real-time 魏 nearest neighbor monitoring method is proposed, which is suitable for multi-time process characteristics. Firstly, a time division method based on random projection and K-means clustering is proposed. Based on the measured data after random projection, the whole production cycle of batch process is divided into several sub-periods by using K-means clustering algorithm. A subperiod monitoring model is established by using 魏 -nearest neighbor method to monitor batch processes in real time.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP274
【參考文獻】
相關(guān)期刊論文 前10條
1 周梅;周哲;文成林;;基于k近鄰的批次過程在線實時監(jiān)測方法[J];計算機輔助工程;2015年03期
2 郭小萍;袁杰;李元;;基于特征空間k最近鄰的批次過程監(jiān)視[J];自動化學(xué)報;2014年01期
3 張成;李元;;基于統(tǒng)計模量分析間歇過程故障檢測方法研究[J];儀器儀表學(xué)報;2013年09期
4 高毫林;徐旭;李弼程;;近似最近鄰搜索算法——位置敏感哈希[J];信息工程大學(xué)學(xué)報;2013年03期
5 姜慶超;顏學(xué)峰;;基于敏感核主成分的化工過程統(tǒng)計監(jiān)控(英文)[J];Chinese Journal of Chemical Engineering;2013年06期
6 賀曉冉;陳宸;金光石;熊智華;;青霉素發(fā)酵過程的模型仿真與補料優(yōu)化[J];化工學(xué)報;2012年09期
7 李晗;蕭德云;;基于數(shù)據(jù)驅(qū)動的故障診斷方法綜述[J];控制與決策;2011年01期
8 常玉清;王姝;譚帥;王福利;楊潔;;基于多時段MPCA模型的間歇過程監(jiān)測方法研究[J];自動化學(xué)報;2010年09期
9 趙春暉;王福利;姚遠;高福榮;;基于時段的間歇過程統(tǒng)計建模、在線監(jiān)測及質(zhì)量預(yù)報[J];自動化學(xué)報;2010年03期
10 陸寧云;王福利;高福榮;王姝;;間歇過程的統(tǒng)計建模與在線監(jiān)測[J];自動化學(xué)報;2006年03期
相關(guān)博士學(xué)位論文 前2條
1 王姝;基于數(shù)據(jù)的間歇過程故障診斷及預(yù)測方法研究[D];東北大學(xué);2010年
2 謝磊;間歇過程統(tǒng)計性能監(jiān)控研究[D];浙江大學(xué);2005年
,本文編號:1879776
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1879776.html