柔性關(guān)節(jié)機(jī)器人輸出反饋?zhàn)赃m應(yīng)軌跡跟蹤控制研究
本文選題:柔性關(guān)節(jié)機(jī)器人 + 奇異攝動(dòng) ; 參考:《東華大學(xué)》2017年碩士論文
【摘要】:與傳統(tǒng)的關(guān)節(jié)和連桿均為剛性的機(jī)器人相比,柔性關(guān)節(jié)機(jī)器人具有結(jié)構(gòu)緊湊、質(zhì)量輕和能耗低等特點(diǎn),被廣泛應(yīng)用于業(yè)界。本文基于奇異攝動(dòng)理論和積分流概念,深入研究了柔性關(guān)節(jié)機(jī)器人的輸出反饋?zhàn)赃m應(yīng)軌跡跟蹤控制方法,研究成果將為柔性關(guān)節(jié)機(jī)器人的高性能實(shí)際應(yīng)用提供一定的理論依據(jù)。首先,根據(jù)Spong提出的柔性關(guān)節(jié)簡(jiǎn)化模型,利用拉格朗日方程推導(dǎo)出柔性關(guān)節(jié)機(jī)器人的動(dòng)力學(xué)模型,再通過(guò)引入奇異攝動(dòng)理論和積分流概念將其解耦成兩個(gè)子系統(tǒng),即慢子系統(tǒng)和快子系統(tǒng)。慢子系統(tǒng)表示柔性關(guān)機(jī)機(jī)器人系統(tǒng)模型中的剛性部分,快子系統(tǒng)是用來(lái)描述關(guān)節(jié)處的柔性特性。從而,柔性關(guān)節(jié)機(jī)器人的控制器設(shè)計(jì)轉(zhuǎn)變?yōu)獒槍?duì)兩個(gè)子系統(tǒng)的控制器設(shè)計(jì)。其次,針對(duì)柔性關(guān)節(jié)機(jī)器人系統(tǒng)模型中存在參數(shù)不確定性和上界未知的外部擾動(dòng),設(shè)計(jì)了一種基于改進(jìn)參數(shù)線性化表達(dá)式的魯棒自適應(yīng)控制器作為慢子控制律。同時(shí),通過(guò)對(duì)快子系統(tǒng)方程進(jìn)行變形,將其轉(zhuǎn)變成典型的目標(biāo)跟蹤類問(wèn)題,從而使快子控制律的設(shè)計(jì)更加靈活。此外,為實(shí)現(xiàn)僅需位置反饋的輸出反饋控制,在快、慢子系統(tǒng)中均引入一種近似微分濾波器來(lái)得到偽速度誤差信號(hào)以消除對(duì)速度的測(cè)量。然后,針對(duì)不同(強(qiáng)或弱)柔性關(guān)節(jié)系統(tǒng),本文提出了一種有界自適應(yīng)控制器來(lái)解決柔性關(guān)節(jié)機(jī)器人中存在參數(shù)不確定性和輸出力矩有界的問(wèn)題?刂坡傻脑O(shè)計(jì)中,一類飽和函數(shù)被用來(lái)確保關(guān)節(jié)執(zhí)行器輸出力矩有界,一種投影自適應(yīng)控制律用來(lái)克服慢子控制律中前饋?lái)?xiàng)的參數(shù)不確定性。同時(shí),為使整個(gè)閉環(huán)控制系統(tǒng)實(shí)現(xiàn)僅需位置反饋的輸出反饋控制,可分別在慢子系統(tǒng)和快子系統(tǒng)中引入線性濾波器和高增益觀測(cè)器來(lái)得到無(wú)法直接測(cè)量狀態(tài)量的估計(jì)值。更為重要的是,通過(guò)奇異攝動(dòng)理論和積分流概念推導(dǎo)出校正控制律,實(shí)現(xiàn)了對(duì)強(qiáng)柔性系統(tǒng)的柔性補(bǔ)償,使得奇異攝動(dòng)方法也能適用于強(qiáng)柔性機(jī)器人系統(tǒng)。最后,對(duì)于柔性關(guān)節(jié)機(jī)器人的穩(wěn)定性分析,考慮到快、慢子系統(tǒng)的穩(wěn)定性無(wú)法直接保證整個(gè)復(fù)合控制系統(tǒng)的穩(wěn)定性。因此本文針對(duì)整個(gè)奇異攝動(dòng)系統(tǒng)給出兩種不同的穩(wěn)定性分析思路。此外,通過(guò)仿真實(shí)驗(yàn)對(duì)提出的兩類控制算法分別進(jìn)行了驗(yàn)證。結(jié)果表明,本文提出魯棒自適應(yīng)輸出反饋控制器和有界自適應(yīng)輸出反饋控制器具有更優(yōu)的軌跡跟蹤性能。
[Abstract]:Compared with the traditional robot with rigid joints and connecting rod, flexible joint robot is widely used in the industry because of its compact structure, light weight and low energy consumption. Based on the singular perturbation theory and the concept of integral flow, the output feedback adaptive trajectory tracking control method of flexible joint robot is studied in this paper. The research results will provide some theoretical basis for the practical application of flexible joint robot with high performance. Firstly, according to the simplified flexible joint model proposed by Spong, the dynamic model of flexible joint robot is derived by using Lagrangian equation, and then it is decoupled into two subsystems by introducing singular perturbation theory and the concept of integral flow. Slow subsystem and fast subsystem. The slow subsystem represents the rigid part of the flexible shutdown robot system model, and the fast subsystem is used to describe the flexible characteristics of the joint. Thus, the controller design of flexible joint robot is transformed into the controller design for two subsystems. Secondly, a robust adaptive controller based on the improved parametric linearization expression is designed to solve the external disturbances with uncertain parameters and unknown upper bounds in the flexible joint robot model. At the same time, the fast subsystem equation is transformed into a typical target tracking problem by deforming the fast subsystem equation, which makes the design of the fast subsystem control law more flexible. In addition, in order to realize the output feedback control with only position feedback, an approximate differential filter is introduced in both fast and slow subsystems to obtain pseudo-velocity error signals to eliminate the measurement of velocity. Then, for different (strong or weak) flexible joint systems, a bounded adaptive controller is proposed to solve the problem of parameter uncertainty and output moment boundedness in flexible joint robot. In the design of control law, a kind of saturation function is used to ensure that the output torque of joint actuator is bounded, and a projection adaptive control law is used to overcome the parameter uncertainty of feedforward term in the control law. At the same time, in order to realize the output feedback control of the whole closed-loop control system, the linear filter and the high gain observer can be introduced into the slow subsystem and the fast subsystem to obtain the estimated value of the state quantity which can not be measured directly. More importantly, through the singular perturbation theory and the concept of integral flow, the correction control law is derived, and the flexible compensation for the strong flexible system is realized, so that the singular perturbation method can also be applied to the strong flexible robot system. Finally, for the stability analysis of flexible joint robot, considering the speed, the stability of the slow subsystem can not directly guarantee the stability of the composite control system. So this paper gives two different methods of stability analysis for the whole singularly perturbed system. In addition, two kinds of control algorithms are verified by simulation experiments. The results show that the robust adaptive output feedback controller and the bounded adaptive output feedback controller have better trajectory tracking performance.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Saturated output feedback tracking control for robot manipulators via fuzzy self-tuning[J];Journal of Zhejiang University-Science C(Computers & Electronics);2010年12期
2 劉淑英;段萍;張明路;;柔性臂機(jī)器人控制方法的研究[J];微計(jì)算機(jī)信息;2009年11期
3 畢勝;季海波;;基于分塊反步設(shè)計(jì)的飛行器姿態(tài)穩(wěn)定魯棒控制[J];宇航學(xué)報(bào);2008年06期
4 章定國(guó);周勝豐;;柔性桿柔性鉸機(jī)器人動(dòng)力學(xué)分析[J];應(yīng)用數(shù)學(xué)和力學(xué);2006年05期
5 于湘珍,李美芳,田聯(lián)房;柔性機(jī)器人的模糊神經(jīng)網(wǎng)絡(luò)控制研究[J];電子科技大學(xué)學(xué)報(bào);2005年02期
6 倪受東,吳洪濤,袁祖強(qiáng),嵇海平;柔性機(jī)械臂的模糊自適應(yīng)控制研究(英文)[J];Transactions of Nanjing University of Aeronautics & Astronau;2004年03期
7 宋軼民,余躍慶,張策,馬金盛;柔性機(jī)器人動(dòng)力學(xué)分析與振動(dòng)控制研究綜述[J];機(jī)械設(shè)計(jì);2003年04期
8 吳立成,陸震,于守謙,鄭紅;一種柔性機(jī)器人的神經(jīng)網(wǎng)絡(luò)控制方法[J];北京航空航天大學(xué)學(xué)報(bào);2002年03期
9 靳春梅,邱陽(yáng),樊靈,張陵;基于FMD理論的間隙機(jī)構(gòu)動(dòng)力學(xué)研究[J];機(jī)械工程學(xué)報(bào);2001年07期
10 樊曉平,徐建閩,毛宗源,周其節(jié);受限柔性機(jī)器人臂的魯棒變結(jié)構(gòu)混合位置/力控制[J];自動(dòng)化學(xué)報(bào);2000年02期
,本文編號(hào):1838846
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1838846.html