一種智能柔性彎曲氣動人工肌肉驅(qū)動器的研究
發(fā)布時間:2018-05-02 07:56
本文選題:柔性驅(qū)動器 + 非線性; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:在近年來隨著社會經(jīng)濟(jì)的不斷發(fā)展,在計算機(jī)科學(xué)、自動化控制、機(jī)器人形態(tài)學(xué)等科學(xué)領(lǐng)域發(fā)展的推動下,機(jī)器人正在人類社會扮演著越來越重要的角色。與此同時由于柔性驅(qū)動器在仿生技術(shù)和機(jī)器人技術(shù)領(lǐng)域應(yīng)用的獨(dú)特優(yōu)勢,而受到越來越多的關(guān)注。與傳統(tǒng)的驅(qū)動機(jī)構(gòu)依靠剛性齒輪、鉸鏈、連桿、凸輪等機(jī)械結(jié)構(gòu)實(shí)現(xiàn)復(fù)雜的運(yùn)動形式不同,柔性驅(qū)動器或驅(qū)動結(jié)構(gòu)依靠自身柔性結(jié)構(gòu)在外界激勵作用下發(fā)生的結(jié)構(gòu)變形來實(shí)現(xiàn)復(fù)雜、靈活的運(yùn)動。本文研究的柔性氣動肌肉驅(qū)動器便屬于其中一種以流體壓力作為激勵源的柔性驅(qū)動器。柔性驅(qū)動器和驅(qū)動機(jī)構(gòu)由于自身結(jié)構(gòu)的柔性本質(zhì),具有傳統(tǒng)驅(qū)動結(jié)構(gòu)無法相比的柔順性、靈活性,但與此同時也帶來了結(jié)構(gòu)和控制系統(tǒng)上強(qiáng)耦合、非線性、時變性的特點(diǎn),使得柔性驅(qū)動器的力學(xué)分析與運(yùn)動控制變得非常困難。本文為此開發(fā)了一種新型智能柔性彎曲氣動肌肉驅(qū)動器,該驅(qū)動器具有結(jié)構(gòu)簡單輸出穩(wěn)定的特點(diǎn)。該驅(qū)動器包括彈性軟管、編織網(wǎng)管、彈性支架、連接件等結(jié)構(gòu)。當(dāng)作為彈性內(nèi)腔的彈性軟管充入壓縮氣體時驅(qū)動器在編織網(wǎng)管和彈性支架約束下產(chǎn)生向一側(cè)的彎曲運(yùn)動。而基于該驅(qū)動器設(shè)計的仿人柔性機(jī)械手能夠適應(yīng)不同形狀和尺寸的目標(biāo)物體,體現(xiàn)出了驅(qū)動器的通用性、靈活性、適應(yīng)性。通過對驅(qū)動的力學(xué)特性的測試與分析發(fā)現(xiàn)驅(qū)動器輸出力/力矩、變形量以及工作氣壓之間存在著一定的遲滯現(xiàn)象和非線性特征。隨后本文利用Mooney-Rivlin超彈性材料模型分別建立了非線性力平衡模型和能量模型,并且與實(shí)驗(yàn)結(jié)果吻合良好,能夠有效地反應(yīng)驅(qū)動器的非線性靜力學(xué)特征。同時本文對驅(qū)動器進(jìn)行了智能化設(shè)計使其具有自感知功能,并實(shí)現(xiàn)柔性驅(qū)動器運(yùn)動狀態(tài)的步進(jìn)式反饋控制。通過測試發(fā)現(xiàn)智能柔性驅(qū)動器的反饋控制不僅能夠?qū)崿F(xiàn)驅(qū)動器的運(yùn)動控制和輸出力控制,還提高了驅(qū)動器的抗損和抗干擾能力。本文對提出的彎曲型氣動肌肉驅(qū)動器建立了可靠實(shí)用有效的靜力學(xué)數(shù)學(xué)模型,從而為該柔性驅(qū)動器的應(yīng)用提供了理論參考和依據(jù)。而自感知驅(qū)動器和智能化控制系統(tǒng)的設(shè)計研究為柔性驅(qū)動器和驅(qū)動結(jié)構(gòu)的控制問題提供了一種頗有前景的解決方案。相信柔性驅(qū)動器和驅(qū)動結(jié)構(gòu)在相關(guān)研究的不斷進(jìn)步下,未來在柔性機(jī)器人、可穿戴運(yùn)動輔助設(shè)備以及工農(nóng)業(yè)生產(chǎn)、醫(yī)療服務(wù)、救援任務(wù)等領(lǐng)域?qū)⒕哂懈訌V闊的應(yīng)用空間和巨大的應(yīng)用價值。
[Abstract]:In recent years, with the development of social economy and the development of computer science, automation control, robot morphology and other scientific fields, robot is playing an increasingly important role in human society. At the same time, flexible actuators have attracted more and more attention because of their unique advantages in bionic technology and robot technology. Different from the traditional driving mechanism, which relies on rigid gears, hinges, connecting rods, cams and other mechanical structures to achieve complex motion forms, Flexible actuator or drive structure can realize complex and flexible motion by the deformation of its flexible structure under external excitation. The flexible pneumatic muscle actuator studied in this paper belongs to one of the flexible actuators with fluid pressure as the source of excitation. Because of the flexible nature of its own structure, the flexible driver and the driving mechanism have the flexibility and flexibility that the traditional drive structure can not compare, but at the same time, it also brings the characteristics of strong coupling, nonlinear and time-varying between the structure and the control system. The mechanical analysis and motion control of flexible actuators are very difficult. In this paper, a new intelligent flexible bending pneumatic muscle driver is developed, which has the characteristics of simple structure and stable output. The drive includes flexible hose, woven mesh tube, elastic support, connectors and other structures. When the elastic hose as an elastic inner cavity is filled with compressed gas, the actuator bends to one side under the constraint of the braided tube and the elastic support. The humanoid flexible manipulator based on the driver can adapt to the object with different shapes and sizes, which reflects the versatility, flexibility and adaptability of the driver. Through the testing and analysis of the mechanical properties of the drive, it is found that there are some hysteresis and nonlinear characteristics between the output force / torque, the deformation and the working pressure of the driver. Then the nonlinear force balance model and the energy model are established by using the Mooney-Rivlin hyperelastic material model. The results are in good agreement with the experimental results and can effectively reflect the nonlinear static characteristics of the actuator. At the same time, the intelligent design of the driver is carried out so that it has the function of self-sensing, and the stepwise feedback control of the motion state of the flexible driver is realized. It is found that the feedback control of the intelligent flexible driver can not only realize the motion control and output force control of the driver, but also improve the anti-loss and anti-interference ability of the driver. In this paper, a reliable, practical and effective static mathematical model of the bending pneumatic muscle actuator is established, which provides a theoretical reference and basis for the application of the flexible actuator. The design and research of self-sensing driver and intelligent control system provide a promising solution for the control problem of flexible driver and drive structure. It is believed that flexible actuators and driver structures will continue to be developed in the future in flexible robots, wearable motion aids, industrial and agricultural production, and medical services. Rescue mission and other fields will have wider application space and great application value.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH789;TP242
【相似文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 陳祥杰;反激式無電解電容LED驅(qū)動器的研究[D];浙江大學(xué);2017年
,本文編號:1833035
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1833035.html
最近更新
教材專著