求解動(dòng)態(tài)優(yōu)化問(wèn)題的多種群骨干粒子群算法
本文選題:動(dòng)態(tài)優(yōu)化問(wèn)題 + 骨干粒子群算法 ; 參考:《計(jì)算機(jī)工程與應(yīng)用》2017年19期
【摘要】:針對(duì)動(dòng)態(tài)優(yōu)化問(wèn)題(Dynamic Optimization Problem,DOP)中所面臨的過(guò)時(shí)記憶和多樣性喪失的挑戰(zhàn),提出了一種改進(jìn)的多種群骨干粒子群優(yōu)化算法(Multi-swarms Bare Bones Particle Swarm Optimization,MBBPSO)。通過(guò)設(shè)置環(huán)境勘探粒子及時(shí)檢測(cè)環(huán)境的變化,避免了錯(cuò)誤信息誤導(dǎo)種群的進(jìn)化方向;環(huán)境改變后,利用上一個(gè)環(huán)境搜索的信息初始化新的種群,提高M(jìn)BBPSO快速追蹤到當(dāng)前環(huán)境的優(yōu)秀解的能力;當(dāng)種群陷入停滯時(shí),采用新的進(jìn)化方程以加強(qiáng)粒子的活性和多種群策略維持群體的多樣性。仿真實(shí)驗(yàn)表明,MBBPSO在解決動(dòng)態(tài)環(huán)境問(wèn)題中具有較強(qiáng)的競(jìng)爭(zhēng)力。
[Abstract]:Aiming at the challenge of out-of-date memory and loss of diversity in dynamic Optimization problem, an improved multi-swarms Bare Bones Particle Swarm optimization algorithm is proposed. By setting up environmental exploration particles to detect the changes in the environment in time, the wrong information is avoided to mislead the evolution direction of the population; after the environment changes, the new population is initialized with the information from the previous environmental search. Improve the ability of MBBPSO to track the excellent solutions to the current environment quickly; when the population is stagnant, the new evolution equation is adopted to enhance the activity of particles and maintain the diversity of the population. Simulation results show that MBBPSO is competitive in solving dynamic environmental problems.
【作者單位】: 安徽工業(yè)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(No.61300059,No.61502010)
【分類號(hào)】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張強(qiáng);李樹榮;雷陽(yáng);張曉東;;二次求解具有控制切換結(jié)構(gòu)的動(dòng)態(tài)優(yōu)化問(wèn)題(英文)[J];化工學(xué)報(bào);2011年08期
2 劉闖;韓敏;王心哲;;動(dòng)態(tài)優(yōu)化問(wèn)題中的演化膜算法[J];哈爾濱工程大學(xué)學(xué)報(bào);2013年11期
3 武燕;王宇平;劉小雄;冶繼民;;求解動(dòng)態(tài)優(yōu)化問(wèn)題的自組織進(jìn)化算法[J];控制與決策;2009年05期
4 胡云卿;劉興高;薛安克;;非線性動(dòng)態(tài)優(yōu)化問(wèn)題的改進(jìn)控制矢量迭代法(Ⅰ)無(wú)路徑約束問(wèn)題(英文)[J];Chinese Journal of Chemical Engineering;2012年06期
5 田宇;李斌;王瑜;;雙吸引子多群體粒子群算法解決動(dòng)態(tài)優(yōu)化問(wèn)題(英文)[J];系統(tǒng)仿真學(xué)報(bào);2010年05期
6 胡云卿;劉興高;;處理動(dòng)態(tài)優(yōu)化問(wèn)題中控制變量路徑約束的方法[J];自動(dòng)化學(xué)報(bào);2013年04期
7 陳昊;黎明;江澤濤;儲(chǔ)s,
本文編號(hào):1827838
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1827838.html