統(tǒng)計機器翻譯中大規(guī)模特征的深度融合
本文選題:大規(guī)模特征 + 異類語料 ; 參考:《浙江大學學報(工學版)》2017年01期
【摘要】:對循環(huán)神經(jīng)網(wǎng)絡和遞歸神經(jīng)網(wǎng)絡進行改進,提出深度融合的神經(jīng)網(wǎng)絡(DNN)模型,在訓練過程中加入大規(guī)模特征.該模型有很強的泛化能力,適合于現(xiàn)在主流的自底向上解碼樣式,融合了2種經(jīng)典的機器翻譯模型:基于短語的層次化文法(HPG)和括號轉(zhuǎn)錄文法(BTG).使用改進的循環(huán)神經(jīng)網(wǎng)絡,生成適合短語生成過程的短語/規(guī)則對語義向量,并在生成過程中使用了自編碼器以提高循環(huán)神經(jīng)網(wǎng)絡的性能.使用改進的遞歸神經(jīng)網(wǎng)絡,使它在翻譯過程中指導解碼,考慮到另一個解碼器在解碼過程中的信息,互相影響共同提高翻譯性能.提出的深度融合模型不僅適合于異類翻譯系統(tǒng),也適合于異類語料.相對于經(jīng)典的基線系統(tǒng),在異類系統(tǒng)上該模型的實驗結(jié)果獲得1.0~1.9倍的BLEU分數(shù)提高,在異類語料上該模型的實驗結(jié)果獲得1.05~1.58的BLEU分數(shù)提高,且進行了統(tǒng)計顯著性檢驗.
[Abstract]:Based on the improvement of cyclic neural network and recurrent neural network, a DNNN model with deep fusion is proposed, in which large-scale features are added to the training process. The improved cyclic neural network is used to generate the phrase / rule pair semantic vector suitable for the phrase generation process, and the self-encoder is used to improve the performance of the cyclic neural network. The improved recursive neural network is used to guide the decoding in the process of translation and to improve the translation performance by taking into account the information of the other decoder during the decoding process. The proposed depth fusion model is not only suitable for heterogeneous translation systems, but also suitable for heterogeneous corpus.
【作者單位】: 哈爾濱工程大學計算機科學與技術(shù)學院;哈爾濱理工大學軟件學院;哈爾濱工業(yè)大學計算機學院;
【基金】:國家自然科學青年基金資助項目(61300115) 中國博士后科學基金資助項目(2014M561331)
【分類號】:TP391.2;TP183
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 云中客;新的神經(jīng)網(wǎng)絡來自于仿生學[J];物理;2001年10期
2 唐春明,高協(xié)平;進化神經(jīng)網(wǎng)絡的研究進展[J];系統(tǒng)工程與電子技術(shù);2001年10期
3 李智;一種基于神經(jīng)網(wǎng)絡的煤炭調(diào)運優(yōu)化方法[J];長沙鐵道學院學報;2003年02期
4 程科,王士同,楊靜宇;新型模糊形態(tài)神經(jīng)網(wǎng)絡及其應用研究[J];計算機工程與應用;2004年21期
5 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡推定操作者疲勞的研究[J];人類工效學;2004年03期
6 周麗暉;從統(tǒng)計角度看神經(jīng)網(wǎng)絡[J];統(tǒng)計教育;2005年06期
7 趙奇 ,劉開第 ,龐彥軍;灰色補償神經(jīng)網(wǎng)絡及其應用研究[J];微計算機信息;2005年14期
8 袁婷;;神經(jīng)網(wǎng)絡在股票市場預測中的應用[J];軟件導刊;2006年05期
9 尚晉;楊有;;從神經(jīng)網(wǎng)絡的過去談科學發(fā)展觀[J];重慶三峽學院學報;2006年03期
10 楊鐘瑾;;神經(jīng)網(wǎng)絡的過去、現(xiàn)在和將來[J];青年探索;2006年04期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡的混沌性[A];1996中國控制與決策學術(shù)年會論文集[C];1996年
2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡[A];2003年中國智能自動化會議論文集(上冊)[C];2003年
3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡和簡單規(guī)劃的識別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應用學術(shù)會議論文集[C];2009年
4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
5 鐘義信;;知識論:神經(jīng)網(wǎng)絡的新機遇——紀念中國神經(jīng)網(wǎng)絡10周年[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
6 許進;保錚;;神經(jīng)網(wǎng)絡與圖論[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預報產(chǎn)品的神經(jīng)網(wǎng)絡釋用預報應用[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
8 田金亭;;神經(jīng)網(wǎng)絡在中學生創(chuàng)造力評估中的應用[A];第十二屆全國心理學學術(shù)大會論文摘要集[C];2009年
9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡的混沌特性研究[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學學報(增刊)][C];2009年
10 張廣遠;萬強;曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學術(shù)會議論文集[C];2010年
中國重要報紙全文數(shù)據(jù)庫 前10條
1 美國明尼蘇達大學社會學博士 密西西比州立大學國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護好創(chuàng)新的“神經(jīng)網(wǎng)絡硬件”[N];中國教師報;2014年
2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計算機世界;2001年
3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡將大顯身手[N];中國紡織報;2003年
4 中國科技大學計算機系 邢方亮;神經(jīng)網(wǎng)絡挑戰(zhàn)人類大腦[N];計算機世界;2003年
5 記者 孫剛;“神經(jīng)網(wǎng)絡”:打開復雜工藝“黑箱”[N];解放日報;2007年
6 本報記者 劉霞;美用DNA制造出首個人造神經(jīng)網(wǎng)絡[N];科技日報;2011年
7 健康時報特約記者 張獻懷;干細胞移植:修復受損的神經(jīng)網(wǎng)絡[N];健康時報;2006年
8 劉力;我半導體神經(jīng)網(wǎng)絡技術(shù)及應用研究達國際先進水平[N];中國電子報;2001年
9 ;神經(jīng)網(wǎng)絡和模糊邏輯[N];世界金屬導報;2002年
10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡應用研究通過鑒定[N];中國船舶報;2006年
中國博士學位論文全文數(shù)據(jù)庫 前10條
1 楊旭華;神經(jīng)網(wǎng)絡及其在控制中的應用研究[D];浙江大學;2004年
2 李素芳;基于神經(jīng)網(wǎng)絡的無線通信算法研究[D];山東大學;2015年
3 石艷超;憶阻神經(jīng)網(wǎng)絡的混沌性及幾類時滯神經(jīng)網(wǎng)絡的同步研究[D];電子科技大學;2014年
4 王新迎;基于隨機映射神經(jīng)網(wǎng)絡的多元時間序列預測方法研究[D];大連理工大學;2015年
5 付愛民;極速學習機的訓練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學;2015年
6 李輝;基于粒計算的神經(jīng)網(wǎng)絡及集成方法研究[D];中國礦業(yè)大學;2015年
7 王衛(wèi)蘋;復雜網(wǎng)絡幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學;2015年
8 張海軍;基于云計算的神經(jīng)網(wǎng)絡并行實現(xiàn)及其學習方法研究[D];華南理工大學;2015年
9 李艷晴;風速時間序列預測算法研究[D];北京科技大學;2016年
10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學;2015年
中國碩士學位論文全文數(shù)據(jù)庫 前10條
1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡與高校效益預測的研究[D];華南理工大學;2015年
2 賈文靜;基于改進型神經(jīng)網(wǎng)絡的風力發(fā)電系統(tǒng)預測及控制研究[D];燕山大學;2015年
3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學;2015年
4 陳彥至;神經(jīng)網(wǎng)絡降維算法研究與應用[D];華南理工大學;2015年
5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡研究[D];西南大學;2015年
6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡的遙感圖像分類研究[D];昆明理工大學;2015年
7 李志杰;基于神經(jīng)網(wǎng)絡的上證指數(shù)預測研究[D];華南理工大學;2015年
8 陳少吉;基于神經(jīng)網(wǎng)絡血壓預測研究與系統(tǒng)實現(xiàn)[D];華南理工大學;2015年
9 張韜;幾類時滯神經(jīng)網(wǎng)絡穩(wěn)定性分析[D];渤海大學;2015年
10 邵雪瑩;幾類時滯不確定神經(jīng)網(wǎng)絡的穩(wěn)定性分析[D];渤海大學;2015年
,本文編號:1792776
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1792776.html