無(wú)人艇直線路徑跟蹤控制的研究與實(shí)現(xiàn)
本文選題:無(wú)人水面艇 + 直線路徑跟蹤 ; 參考:《大連海事大學(xué)》2017年碩士論文
【摘要】:水面無(wú)人艇以其廣泛的應(yīng)用前景成為國(guó)內(nèi)外各國(guó)智能化海洋裝備的發(fā)展重點(diǎn)。作為海洋探索測(cè)繪、海洋環(huán)境監(jiān)測(cè)、維護(hù)國(guó)家海上利益的重要手段,無(wú)人艇的研究日益成為各國(guó)學(xué)者研究的重點(diǎn)和熱點(diǎn)。無(wú)人艇航行時(shí)海面環(huán)境復(fù)雜多變,如何保證無(wú)人艇在安全航行的前提下精準(zhǔn)快速跟蹤所設(shè)定航跡路線成為了完成無(wú)人艇戰(zhàn)略戰(zhàn)術(shù)目標(biāo)的基礎(chǔ)。這就使得快速跟蹤路徑成為了無(wú)人艇航跡研究的重要內(nèi)容之一。本文為了實(shí)現(xiàn)水面無(wú)人艇快速精準(zhǔn)的路徑跟蹤,在研究和參考了大量國(guó)內(nèi)外學(xué)者著作的基礎(chǔ)上,以大連海事大學(xué)"藍(lán)信"號(hào)水面無(wú)人艇作為研究對(duì)象。針對(duì)直線路徑跟蹤控制問題,分別進(jìn)行了間接路徑跟蹤控制器和直接路徑跟蹤控制器的設(shè)計(jì)和仿真驗(yàn)證,并且設(shè)計(jì)了串級(jí)模糊PID直線路徑跟蹤實(shí)船實(shí)驗(yàn)。主要內(nèi)容分為以下幾部分:首先,對(duì)依據(jù)船舶數(shù)學(xué)模型建立的相關(guān)知識(shí)對(duì)"藍(lán)信"號(hào)無(wú)人艇分別進(jìn)行了線性數(shù)學(xué)模型和非線性數(shù)學(xué)模型的建立,并且根據(jù)無(wú)人艇操縱實(shí)驗(yàn)的數(shù)據(jù)進(jìn)行了模型參數(shù)的辨識(shí)。為后文設(shè)計(jì)直線路徑跟蹤控制器、直線路徑跟蹤控制的研究和仿真平臺(tái)的建立提供了研究對(duì)象的數(shù)學(xué)模型。在進(jìn)行間接路徑跟蹤控制方法的研究中,利用模糊PID控制算法的原理,分別設(shè)計(jì)了模糊PID航向控制器和模糊PIID航跡控制器。設(shè)計(jì)了雙環(huán)串級(jí)直線路徑跟蹤控制仿真系統(tǒng),仿真結(jié)果表明所設(shè)計(jì)的控制系統(tǒng)具有良好的自適應(yīng)能力,能夠?qū)崿F(xiàn)快速精準(zhǔn)的直線路徑跟蹤的控制目標(biāo)。在進(jìn)行直接路徑跟蹤控制方法的研究中,結(jié)合反步法和滑?刂圃。針對(duì)包含二階舵機(jī)的無(wú)人艇模型設(shè)計(jì)了反步滑模直線路徑跟蹤控制器,仿真結(jié)果表明了該控制器的直線航跡跟蹤控制精度較高,響應(yīng)較快,可為"藍(lán)信"號(hào)無(wú)人水面艇直線路徑跟蹤控制的研究提供參考。最后,將基于模糊自適應(yīng)PID原理設(shè)計(jì)的直線路徑跟蹤控制器應(yīng)用到"藍(lán)信"號(hào)水面無(wú)人艇航跡控制實(shí)驗(yàn)中。海上實(shí)船實(shí)驗(yàn)結(jié)果表明所設(shè)計(jì)的模糊PID直線路徑跟蹤控制器在實(shí)際海洋環(huán)境下的有效性和自適應(yīng)能力?刂凭葷M足快速跟蹤直線路徑的控制目標(biāo)。
[Abstract]:Surface unmanned craft (UAV) has become the development focus of intelligent marine equipment at home and abroad with its wide application prospect. As an important means of marine surveying and mapping, marine environment monitoring and protecting the national marine interests, the research of unmanned craft has increasingly become the focus and hot spot of scholars in various countries. The sea surface environment is complex and changeable while unmanned craft is sailing. How to ensure the unmanned craft to track the track accurately and quickly under the premise of safe navigation has become the foundation of accomplishing the strategic and tactical target of unmanned craft. This makes the fast track tracking become one of the important contents of the track research of unmanned craft. In order to realize the fast and accurate track tracking of the surface unmanned craft, based on the research and reference of a large number of scholars at home and abroad, this paper takes the "Lanxin" surface unmanned craft of Dalian Maritime University as the research object. The design and simulation of the indirect path tracking controller and the direct path tracking controller are carried out for the linear path tracking control problem, and the experiments of cascade fuzzy PID linear path tracking ship are designed. The main contents are as follows: firstly, the linear mathematical model and nonlinear mathematical model of Lanxin unmanned vessel are established according to the relevant knowledge of ship mathematical model. And the model parameters are identified according to the data of unmanned craft control experiment. The mathematical model of the research object is provided for the design of the linear path tracking controller, the research of the linear path tracking control and the establishment of the simulation platform. In the research of indirect path tracking control method, fuzzy PID course controller and fuzzy PIID track controller are designed by using the principle of fuzzy PID control algorithm. A double-loop cascade linear path tracking control simulation system is designed. The simulation results show that the designed control system has a good adaptive ability and can achieve the control goal of fast and accurate linear path tracking. In the research of direct path tracking control, the backstepping method and sliding mode control principle are combined. A backstepping sliding-mode linear path tracking controller is designed for the unmanned ship model with second-order steering gear. The simulation results show that the linear track tracking control of the controller has higher accuracy and faster response. It can provide a reference for the research of the linear path tracking control of the unmanned surface craft Lanxin. Finally, the linear path tracking controller based on fuzzy adaptive PID principle is applied to the track control experiment of Lanxin surface unmanned craft. The experimental results show that the fuzzy PID linear path tracking controller is effective and adaptive in the actual marine environment. The control precision meets the control goal of fast tracking straight line path.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U664.82;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫建;李偉;安思朦;;基于變結(jié)構(gòu)自抗擾的欠驅(qū)動(dòng)水面船舶航跡保持控制[J];大連海事大學(xué)學(xué)報(bào);2015年03期
2 劉賢朋;卜仁祥;劉勇;;基于動(dòng)態(tài)滑模的欠驅(qū)動(dòng)船舶航跡跟蹤控制[J];大連海事大學(xué)學(xué)報(bào);2014年02期
3 邱荷珍;王磊;王洪超;;船舶軌跡跟蹤研究綜述[J];實(shí)驗(yàn)室研究與探索;2014年04期
4 朱大奇;張光磊;李蓉;;生物啟發(fā)AUV三維軌跡跟蹤控制算法[J];智能系統(tǒng)學(xué)報(bào);2014年02期
5 李榮輝;李鐵山;卜仁祥;;欠驅(qū)動(dòng)水面船舶航跡跟蹤自抗擾控制[J];大連海事大學(xué)學(xué)報(bào);2013年02期
6 李家良;;水面無(wú)人艇發(fā)展與應(yīng)用[J];火力與指揮控制;2012年06期
7 劉洋;米偉;郭晨;;船舶航向模糊自整定操舵控制器的研究[J];中國(guó)航海;2010年01期
8 李鐵山;楊鹽生;洪碧光;秦永祥;;船舶航跡控制魯棒自適應(yīng)模糊設(shè)計(jì)[J];控制理論與應(yīng)用;2007年03期
9 楊智,朱海鋒,黃以華;PID控制器設(shè)計(jì)與參數(shù)整定方法綜述[J];化工自動(dòng)化及儀表;2005年05期
10 李鐵山,楊鹽生,洪碧光;船舶直線航跡控制的魯棒自適應(yīng)非線性設(shè)計(jì)[J];大連海事大學(xué)學(xué)報(bào);2004年04期
相關(guān)碩士學(xué)位論文 前2條
1 左婷;模糊PID控制中模糊控制規(guī)則的獲取方法[D];東北師范大學(xué);2010年
2 鞠世瓊;船舶航跡舵控制技術(shù)研究與設(shè)計(jì)[D];哈爾濱工程大學(xué);2007年
,本文編號(hào):1786765
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1786765.html