基于實(shí)數(shù)遺傳算法的有約束優(yōu)化問題初始內(nèi)點(diǎn)的求解方法研究
本文選題:約束優(yōu)化問題 + 初始內(nèi)點(diǎn)。 參考:《東北農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:約束優(yōu)化問題所涉及的領(lǐng)域非常廣泛,為系統(tǒng)的優(yōu)化和管理提供了有力的支持。約束極值問題的理論和方法來源于最優(yōu)化理論和優(yōu)化設(shè)計(jì),主要研究內(nèi)容是在眾多的方案中如何找到那個(gè)最優(yōu)的方案。內(nèi)點(diǎn)法和復(fù)合形法等優(yōu)化算法是求解這一類問題較為常用的方法。但在應(yīng)用內(nèi)點(diǎn)法和復(fù)合形法等優(yōu)化算法時(shí),首先要找到一個(gè)初始內(nèi)點(diǎn)。對(duì)于有些問題,由于缺少先驗(yàn)知識(shí),很難人為給出一個(gè)可行的初始內(nèi)點(diǎn),所以,對(duì)有約束優(yōu)化問題初始內(nèi)點(diǎn)的研究就有了重大的理論意義和應(yīng)用價(jià)值。為此,本文在這一方面進(jìn)行了深入的分析與研究,給出了基于實(shí)數(shù)遺傳算法來求解約束優(yōu)化問題初始內(nèi)點(diǎn)的一種新方法。本文通過對(duì)國內(nèi)外有關(guān)文獻(xiàn)的深入研究,采用數(shù)學(xué)、計(jì)算機(jī)科學(xué)等多學(xué)科的綜合分析法,以制約函數(shù)法的相關(guān)理論為基礎(chǔ),提出了基于改進(jìn)實(shí)數(shù)遺傳算法求解有約束優(yōu)化問題初始內(nèi)點(diǎn)的模型,并進(jìn)行了示例計(jì)算。取得的主要研究成果如下:(1)本文經(jīng)研究分析給出了求解約束優(yōu)化問題初始內(nèi)點(diǎn)的一種方法——實(shí)數(shù)遺傳算法。相對(duì)傳統(tǒng)方法需要約束條件是可導(dǎo)的,本文提出的新方法則沒有這些要求,因此更具有普適性。(2)提出了基于改進(jìn)實(shí)數(shù)遺傳算法求解有約束優(yōu)化問題初始內(nèi)點(diǎn)的數(shù)學(xué)模型。(3)給出了用實(shí)數(shù)遺傳算法求解約束優(yōu)化問題初始內(nèi)點(diǎn)時(shí)適應(yīng)度函數(shù)的構(gòu)造方法與模型。(4)本文給出的進(jìn)化策略具有如下特點(diǎn):1)在交叉操作時(shí)將交叉概率取1,以保證所有的父代配對(duì)個(gè)體都需要進(jìn)行交叉,即:選擇這樣的交叉概率能夠增加產(chǎn)生子代個(gè)體的數(shù)量,能夠增大產(chǎn)生更加優(yōu)秀個(gè)體的可能性,使算法的運(yùn)算速度能夠得到提高。2)將交叉產(chǎn)生的個(gè)體與父代中精英保留的m個(gè)個(gè)體放在一起排序,重新選出精英保留的m個(gè)個(gè)體。這樣可以避免交叉操作產(chǎn)生的優(yōu)秀個(gè)體在變異操作過程中遭到破壞的不足,使得交叉操作產(chǎn)生的優(yōu)秀個(gè)體能夠得到生存。3)對(duì)變異操作后的個(gè)體排序,然后用精英保留的m個(gè)優(yōu)秀個(gè)體對(duì)變異操作后最差的m個(gè)個(gè)體進(jìn)行替換,形成新的種群。這樣既有效的保證了種群的多樣性,同時(shí)又使得求得的最優(yōu)結(jié)果不會(huì)比前一次求得的結(jié)果差。(5)進(jìn)行了實(shí)例計(jì)算,結(jié)果表明該方法是一種行之有效的方法。由于該方法不用對(duì)約束條件進(jìn)行求導(dǎo),所以較傳統(tǒng)方法具有更廣泛的實(shí)用性。
[Abstract]:Constrained optimization problems involve a wide range of fields and provide strong support for system optimization and management. The theory and method of constrained extremum problem come from optimization theory and optimization design. The main research content is how to find the optimal scheme in many schemes. Optimization algorithms such as interior point method and complex method are commonly used to solve this kind of problems. But when we apply the interior point method and the complex method, we must find an initial interior point. For some problems, due to the lack of prior knowledge, it is difficult to artificially give a feasible initial interior point. Therefore, the study of initial interior point of constrained optimization problems has great theoretical significance and application value. In this paper, a new method of solving the initial interior point of constrained optimization problem based on real genetic algorithm is presented. In this paper, through the in-depth study of relevant literature at home and abroad, the comprehensive analysis method of mathematics, computer science, and so on, is adopted, which is based on the relevant theories of the restriction function method. A model for solving initial interior points of constrained optimization problems based on improved real genetic algorithm is proposed and an example is given. The main research results are as follows: (1) in this paper, a real genetic algorithm is presented to solve the initial interior point of constrained optimization problem. Compared with the traditional method, the constraint condition is derivable, but the new method presented in this paper does not have these requirements. Therefore, a mathematical model based on improved real genetic algorithm for solving initial interior point of constrained optimization problem is proposed. The fitness function of real genetic algorithm for solving initial interior point of constrained optimization problem is given. The evolutionary strategy given in this paper has the following characteristics: 1: 1) in order to ensure that all parent pairs need to cross each other, the crossover probability is taken as 1 in the crossover operation. That is, choosing such a crossover probability can increase the number of individuals who produce offspring, increase the likelihood of producing better individuals, The computation speed of the algorithm can be improved. 2) the cross generated individuals are sorted together with the m individuals retained by the elite in the parent generation, and the m individuals retained by the elite generation are re-selected. In this way, we can avoid the deficiency that the excellent individual generated by the crossover operation will be destroyed in the mutation operation, so that the excellent individual generated by the crossover operation can get survival. 3) the individual after the mutation operation can be sorted. A new population was formed by replacing the worst m individuals with the best ones retained by the elite. This not only effectively guarantees the diversity of the population, but also makes the optimal result not worse than the previous one. The result shows that this method is an effective method. The method is more practical than the traditional method because it does not have to derive the constraint conditions.
【學(xué)位授予單位】:東北農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉振;彭軍;劉勇;;小生境分布估計(jì)量子遺傳算法及其仿真分析[J];計(jì)算機(jī)工程與科學(xué);2016年01期
2 賀永興;楊瑞;唐偉;歐新良;;基于重構(gòu)變異算子遺傳算法的研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年12期
3 曹順鋒;焦永昌;張錚;;多種群首領(lǐng)決策遺傳算法優(yōu)化陣列天線[J];電波科學(xué)學(xué)報(bào);2015年06期
4 蔣平;梁樂;;基于內(nèi)點(diǎn)法和遺傳算法相結(jié)合的交直流系統(tǒng)無功優(yōu)化[J];高電壓技術(shù);2015年03期
5 王興元;侯憲鋒;董文昭;丁金存;;基于遺傳算法的城市環(huán)境監(jiān)測(cè)點(diǎn)布局分析[J];科技創(chuàng)新與應(yīng)用;2014年33期
6 王利琴;董永峰;顧軍華;;改進(jìn)的精英遺傳算法及其在特征選擇中的應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2014年05期
7 常紅偉;馬華;張介秋;張志遠(yuǎn);徐卓;王甲富;屈紹波;;基于加權(quán)實(shí)數(shù)編碼遺傳算法的超材料優(yōu)化設(shè)計(jì)[J];物理學(xué)報(bào);2014年08期
8 吳天羿;許繼恒;劉建永;昝良;;求解有硬時(shí)間窗車輛路徑問題的改進(jìn)遺傳算法[J];系統(tǒng)工程與電子技術(shù);2014年04期
9 李炯城;王陽洋;李桂愉;王強(qiáng);肖恒輝;劉海林;;快速收斂的混合遺傳算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2014年02期
10 謝燕麗;許青林;姜文超;;一種基于交叉和變異算子改進(jìn)的遺傳算法研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年04期
相關(guān)碩士學(xué)位論文 前2條
1 管小艷;實(shí)數(shù)編碼下遺傳算法的改進(jìn)及其應(yīng)用[D];重慶大學(xué);2012年
2 金芬;遺傳算法在函數(shù)優(yōu)化中的應(yīng)用研究[D];蘇州大學(xué);2008年
,本文編號(hào):1780519
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1780519.html