輪輻式壓電六維力傳感器結(jié)構(gòu)設計及優(yōu)化
本文選題:輪輻式結(jié)構(gòu) + 壓電六維力傳感器; 參考:《濟南大學》2017年碩士論文
【摘要】:隨著近代工業(yè)技術(shù)以及現(xiàn)代制造業(yè)的發(fā)展和革新,自動化作業(yè)機器人已經(jīng)成為工業(yè)領域的重要組成部分。無論是重載制造裝備,還是工業(yè)上常用的工業(yè)機器人和機械手,在其工作過程中都需要多維靈巧的操作能力和實時力反饋功能幫助其實現(xiàn)正確恰當?shù)淖灾鞑僮?而保證這一功能可以正確實現(xiàn)的核心結(jié)構(gòu)就是六維力傳感器。高靈敏度的六維力傳感器是機器人手臂關節(jié)的重要組成部分也是不可或缺的部分,六維力傳感器的性能直接決定機器人的工作效率。本文選用動態(tài)測量性能及力反饋性能較為優(yōu)異的壓電石英作為力敏元件,通過建模仿真技術(shù)及結(jié)構(gòu)設計技術(shù),結(jié)合并聯(lián)分載原理及多支點測量原理設計了一種應用于工業(yè)機器人及機械手關節(jié)部分的輪輻式壓電六維力傳感器,并進行了性能標定及優(yōu)化。首先,本文對三支點測量原理,四支點測量原理及五支點測量原理等進行研究,推導出多支點測量原理及測量公式,結(jié)合多支點空間布局原理將四支點布局方式中的十字形布局及正方形布局進行結(jié)合,提出一種新型的八支點空間布局方式并對其測量原理進行了深入研究。其次,本文結(jié)合多支點測量原理及測量公式對力敏元件的疊放布局方式進行了深入分析;趬弘姍C理及壓電方程整合出一整套合理的石英晶組疊放布置方式,依據(jù)八支點空間布局原理,設計出一種無耦合現(xiàn)象的六維力測量方案及測量公式。再次,本文通過市場調(diào)研和文獻檢索,考慮機器人及機械手臂關節(jié)尺寸及操作環(huán)境需要,結(jié)合八點支撐式空間布局方案設計出一種圓盤式壓電六維力傳感器結(jié)構(gòu)。通過參數(shù)化建模結(jié)合仿真實驗,得出該結(jié)構(gòu)傳感器的性能指標,圓盤式壓電六維力傳感器可以有效完成六維力的測量,但是存在上下蓋殼體受力不均、力學傳遞效率較低、質(zhì)量過大以及固有頻率不足等缺陷;谳p量化原則結(jié)合力學傳遞機理以及并聯(lián)分載原理,對圓盤式壓電六維力傳感器結(jié)構(gòu)進行優(yōu)化設計,將圓盤力學分載機構(gòu)改進設計為輪輻式結(jié)構(gòu),建模并進行仿真實驗。實驗結(jié)果顯示:經(jīng)過結(jié)構(gòu)優(yōu)化,輪輻式壓電六維力傳感器結(jié)構(gòu)力學傳遞性能得到了大幅度改善,上下蓋殼體受力一致,輪輻式并聯(lián)分載機構(gòu)作用良好,力學傳遞效率較高,同時固有頻率和靈敏度也得到極大的提升。輪輻式壓電六維力傳感器結(jié)構(gòu)采用輕量化設計,大大降低了傳感器本身重量,減少了安裝后機器人以及機械手臂的工作能耗,提升了工作效率。輪輻式壓電六維力傳感器主要特點為:低能耗、高固有頻率、高靈敏度,同時具有高速測量和動態(tài)測量功能。最后,本文對輪輻式壓電六維力傳感器進行參數(shù)化建模,建立了力學模型以及參數(shù)化實體模型,并對其進行六維力測量仿真實驗,結(jié)合八支點測量公式對其進行了性能檢測與量程合理化分析,計算出不同載荷下傳感器的力學傳遞效率。實驗結(jié)果顯示:該輪輻式壓電六維力傳感器各項性能參數(shù)指標良好,可以有效的完成六維力測量并且不存在耦合現(xiàn)象。
[Abstract]:With the development of modern industrial technology and modern manufacturing industry development and innovation, automatic robot has become an important part of the industrial sector. Both heavy manufacturing equipment, is commonly used in industry and industrial robot manipulator, in the course of their work are required for operation ability dimension dexterity and real-time force feedback to help them achieve independent function operate properly, and to ensure that the core structure of this function can be implemented correctly is the six axis force sensor. The six axis force sensor with high sensitivity is an important part of a joint of a robot arm is also an indispensable part of the performance of six dimensional force sensor directly determines the efficiency of the robot. The dynamic performance of measuring force and piezoelectric quartz is excellent performance feedback as the sensing element, through the modeling and simulation technology and structural design technology, combined with the original parallel load And multi pivot measuring principle is designed for a wheel type industrial robot and manipulator joint part of the piezoelectric six dimensional force sensor, and the calibration and optimization performance. First of all, on the three point measurement principle, study four fulcrum measurement principle and five fulcrum measuring principle, deduce the multi fulcrum measurement principle and the measurement formula, combined with the multi pivot space layout layout principle four fulcrum of the cruciform layout and square layout are combined, this article puts forward a new eight fulcrum space layout and the measurement principle are researched. Secondly, combining multi fulcrum measuring principle and formula of force sensitive element stack on the layout are analyzed. The piezoelectric equation of piezoelectric mechanism and integration of a set of reasonable quartz crystal groups stacked layout based on the basis of the eight pivot layout principle, design The six dimensional force measurement scheme and measurement formula of a coupling phenomenon. Thirdly, through market research and literature retrieval, and consider the robot arm joint size and operating environment, combined with a disc type piezoelectric six dimensional force sensor structure design of eight point supporting type space layout scheme. Through combining parametric modeling simulation results obtained the performance of the sensor structure, measurement of disc type piezoelectric six dimensional force sensor can complete six dimensional, but there are upper and lower cover shell uneven force, mechanical transmission efficiency is low, the quality is too large and the natural frequency of the lack of lightweight principle combined with mechanical transmission mechanism as well as parallel based on the principle of load, and optimize the design of disk type piezoelectric six dimensional force sensor structure, the mechanical disk loading mechanism for improving design of spoke structure, modeling and simulation Experimental results show: after structure optimization, spokewise piezoelectric six dimensional force sensor structure mechanical transfer performance has been greatly improved, the upper and lower cover shell stress, spokewise parallel load distribution mechanism, mechanical transmission efficiency is high, and the natural frequency and sensitivity has been greatly improved. The use of lightweight design spokewise piezoelectric six dimensional force sensor structure, greatly reduces the sensor itself weight, reduce energy consumption and work after the installation of the robot arm, enhance the work efficiency. Spokewise piezoelectric six dimensional force sensor is characterized by low energy consumption, high frequency, high sensitivity, and has high speed measurement and dynamic measurement function. Finally in this paper, the parametric modeling of spokewise piezoelectric six dimensional force sensor, established the mechanical model and parametric entity model, and carries on the simulation experiment of six axis force measurement, The performance test and range rationalization analysis combined with the eight pivot measurement formula, calculate the mechanical sensor under different load transfer efficiency. Experimental results show that the spokewise piezoelectric six dimensional force sensor performance index is good, can effectively complete the six dimensional force measurement and there is no coupling phenomenon.
【學位授予單位】:濟南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP212
【參考文獻】
相關期刊論文 前10條
1 賈振元;高翼飛;任宗金;劉巍;;六維力壓電天平研制與靜態(tài)性能測試研究[J];大連理工大學學報;2014年01期
2 趙磊;劉巍;鞏巖;;預緊式Stewart結(jié)構(gòu)六維力/力矩傳感器[J];光學精密工程;2011年12期
3 馬惠鋮;;壓電效應以及壓電材料的研究[J];科技資訊;2010年30期
4 王宣銀;尹瑞多;;基于Stewart機構(gòu)的六維力/力矩傳感器[J];機械工程學報;2008年12期
5 徐方;;工業(yè)機器人產(chǎn)業(yè)現(xiàn)狀與發(fā)展[J];機器人技術(shù)與應用;2007年05期
6 干方建;劉正士;任傳勝;張平;;一種應變式多維力傳感器的優(yōu)化設計[J];傳感器與微系統(tǒng);2007年01期
7 賈美娟;李鄧化;居偉駿;馬永成;;新型振動加速度傳感器電壓靈敏度研究[J];儀器儀表學報;2006年S2期
8 尹瑞多,王宣銀,程佳,李強;廣義六維力傳感器的特點及研究和應用狀況[J];液壓與氣動;2005年10期
9 姚智慧,張付祥;新型力解耦機器人六維力傳感器研究[J];傳感技術(shù)學報;2002年04期
10 姚智慧,張付祥;機器人六維力傳感器研究概況及發(fā)展預測[J];廣東自動化與信息工程;2002年03期
相關博士學位論文 前1條
1 李映君;新型軸用并聯(lián)壓電式六維大力傳感器的研究[D];大連理工大學;2010年
相關碩士學位論文 前10條
1 沈俊;基于ROS的自主移動機器人系統(tǒng)設計與實現(xiàn)[D];西南科技大學;2016年
2 李東;集成式壓電六維力傳感器測量原理與技術(shù)研究[D];大連理工大學;2015年
3 李玉欽;壓電式六維大力傳感器的并聯(lián)分載原理研究及其結(jié)構(gòu)設計[D];濟南大學;2015年
4 喬尚嶺;無耦合六維力—力矩傳感器數(shù)據(jù)采集系統(tǒng)研究[D];哈爾濱工業(yè)大學;2014年
5 張琦;鋼球冷鐓機壓電薄膜力傳感器研究[D];濟南大學;2014年
6 馬新科;仿人機器人用安全型六維力傳感器設計與分析[D];哈爾濱工業(yè)大學;2011年
7 張眾;大載荷六維力傳感器及其標定技術(shù)研究[D];大連理工大學;2011年
8 張偉;基于LabVIEW的應變式力傳感器動態(tài)特性及動態(tài)測量平臺的研究[D];中國計量科學研究院;2010年
9 李寒光;四支點壓電式軸用六維力傳感器的研制[D];大連理工大學;2009年
10 彭志龍;大量程六維壓電力傳感器標定系統(tǒng)的研究[D];大連理工大學;2009年
,本文編號:1754276
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1754276.html