天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于深度學習的對話系統(tǒng)主題分配技術研究

發(fā)布時間:2018-04-10 16:24

  本文選題:主題分配 + 對話系統(tǒng) ; 參考:《哈爾濱工業(yè)大學》2017年碩士論文


【摘要】:隨著人工智能的迅速發(fā)展,理解人類語言并能夠與人類對話,給出相應的信息反饋的機器人成為了大多數人的需求。在這樣的背景下,智能聊天機器人慢慢走入人們的視野。在這股機器人熱潮中,能夠幫助用戶解決日常生活中各種事情的私人助理機器人應運而生。它能夠幫助用戶解決一系列生活中遇到的問題,如打車、預定餐廳等。與機器人對話的最大挑戰(zhàn)就是要把人的自然語言翻譯成機器可以聽得懂的指令,從而給出相應的正確反饋。機器人能夠給出正確反饋的第一步是理解人類需求,所以將用戶輸入理解為正確的主題,即對話系統(tǒng)中的主題分配起著非常重要的作用。本文的研究任務是將用戶的輸入分配到這個語句對應的主題下,以保證接下來的反饋方向正確。本文主要介紹了三種主題分配的方法:基于傳統(tǒng)分類方法的主題分配模型、基于LDA主題模型特征擴展的主題分配方法以及基于深度學習的對話系統(tǒng)主題分配模型;趥鹘y(tǒng)分類方法的主題分配模型可以看做是文本分類任務,本文利用有監(jiān)督學習的方法,在學習的過程中利用學習算法從訓練語料中以特征的方式學習有用信息,從而得到主題分配的模型。該方法的效果高度依賴于人工選擇的特征。基于LDA主題模型特征擴展的短文本分類方法考慮到了短文本詞語稀疏性的特點,加入了擴展詞后,主題特征被加入到了原來的短文本中,以達到語義擴展的效果,避免了短文本傳統(tǒng)的文本表示方法特征稀疏的問題。實驗表明,引入LDA主題詞擴展特征后,主題分配模型取得了更好的效果。深度學習方法的避免了人工選取特征對實驗結果的影響,使機器自動學習文本中的特征,增加了文本中隱藏的詞與詞之間的語義聯(lián)系。本文利用基于卷積神經網絡的句子分類方法以及基于循環(huán)神經網絡的的方法作為主題分配的模型進行實驗,實驗結果表明基于深度學習的主題分配模型相比于傳統(tǒng)方法取得了更好的效果。
[Abstract]:With the rapid development of artificial intelligence, the robot that can understand the human language and communicate with human, giving the corresponding information feedback, has become the demand of most people.In this context, the intelligent chat robot slowly walked into people's view.In this boom of robots, personal assistant robots, which can help users solve all kinds of things in their daily life, come into being.It can help users solve a range of life problems, such as taxi, restaurant reservations and so on.The biggest challenge in conversation with robots is to translate human natural language into instructions that machines can understand and give the correct feedback.The first step for robots to give correct feedback is to understand human needs, so the user input is understood as the correct topic, that is, topic assignment plays a very important role in the dialogue system.The task of this paper is to assign the user's input to the topic corresponding to the statement to ensure the correct direction of the following feedback.This paper mainly introduces three methods of topic assignment: the topic assignment model based on the traditional classification method, the topic assignment method based on the feature extension of the LDA topic model and the topic assignment model of the dialogue system based on in-depth learning.The topic assignment model based on traditional classification method can be regarded as the task of text classification. In this paper, we use supervised learning method and learning algorithm to learn useful information from training corpus in the way of feature.The model of topic assignment is obtained.The effect of this method is highly dependent on the characteristics of manual selection.The short text classification method based on the feature extension of LDA topic model takes into account the sparsity of the short text. After the extension word is added, the theme feature is added to the original short text to achieve the effect of semantic expansion.It avoids the problem of sparse features of traditional text representation in short text.The experimental results show that the topic assignment model is more effective when the extended feature of LDA theme words is introduced.The depth learning method avoids the influence of the artificial selection of the features on the experimental results, makes the machine automatically learn the features in the text, and increases the semantic relation between the hidden words and the words in the text.In this paper, the method of sentence classification based on convolution neural network and the method based on cyclic neural network are used as the model of topic assignment.The experimental results show that the topic assignment model based on deep learning is more effective than the traditional method.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.1;TP18

【參考文獻】

相關期刊論文 前9條

1 王仲遠;程健鵬;王海勛;文繼榮;;短文本理解研究[J];計算機研究與發(fā)展;2016年02期

2 李鋒剛;梁鈺;GAO Xiao-zhi;ZENGER Kai;;基于LDA-wSVM模型的文本分類研究[J];計算機應用研究;2015年01期

3 呂超鎮(zhèn);姬東鴻;吳飛飛;;基于LDA特征擴展的短文本分類[J];計算機工程與應用;2015年04期

4 陸彥婷;陸建峰;楊靜宇;;層次分類方法綜述[J];模式識別與人工智能;2013年12期

5 張志飛;苗奪謙;高燦;;基于LDA主題模型的短文本分類方法[J];計算機應用;2013年06期

6 孫志軍;薛磊;許陽明;王正;;深度學習研究綜述[J];計算機應用研究;2012年08期

7 沈競;;基于信息增益的LDA模型的短文本分類[J];重慶文理學院學報(自然科學版);2011年06期

8 姚全珠;宋志理;彭程;;基于LDA模型的文本分類研究[J];計算機工程與應用;2011年13期

9 鄭勇濤,劉玉樹;支持向量機解決多分類問題研究[J];計算機工程與應用;2005年23期

相關碩士學位論文 前1條

1 宋志理;基于LDA模型的文本分類研究[D];西安理工大學;2010年

,

本文編號:1732015

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1732015.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶7cb3f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com