干旱區(qū)滴灌棉花綜合管理專(zhuān)家系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:干旱區(qū) 切入點(diǎn):滴灌棉花 出處:《石河子大學(xué)》2017年碩士論文
【摘要】:近年來(lái),隨著科技與經(jīng)濟(jì)的發(fā)展,信息技術(shù)得到廣泛應(yīng)用,其在農(nóng)業(yè)領(lǐng)域的應(yīng)用已掀起一次新的技術(shù)革命。作為農(nóng)業(yè)信息技術(shù)的分支之一,以專(zhuān)家系統(tǒng)為代表的智能化農(nóng)業(yè)信息技術(shù)的作用尤為突出。新疆,作為我國(guó)最大的植棉區(qū),由于生產(chǎn)管理水平較低,棉花產(chǎn)量和品質(zhì)潛力未得到發(fā)揮,建立干旱區(qū)滴灌棉花綜合管理專(zhuān)家系統(tǒng),對(duì)于解決當(dāng)前棉花栽培管理中的水、肥、藥利用效率低等問(wèn)題,實(shí)現(xiàn)棉花生長(zhǎng)過(guò)程的動(dòng)態(tài)調(diào)控及栽培技術(shù)的咨詢(xún)服務(wù)等方面,具有十分重要的意義。本文開(kāi)展了 29個(gè)品種、3個(gè)氮素的試驗(yàn),定期調(diào)查棉花生育期、株高、葉齡、蕾鈴數(shù)等數(shù)據(jù)。通過(guò)數(shù)據(jù)分析,構(gòu)建棉花株高模擬模型、葉齡模擬模型,并進(jìn)行模型的驗(yàn)證,結(jié)合新疆地區(qū)棉花栽培管理特性,建立了干旱區(qū)滴灌棉花綜合管理專(zhuān)家系統(tǒng)。主要研究結(jié)果如下:1.構(gòu)建了棉花株高動(dòng)態(tài)模擬模型利用歸一化和聚類(lèi)分析法探明了棉花品種間相對(duì)有效積溫與相對(duì)株高的關(guān)系,建立了基于相對(duì)有效積溫的棉花相對(duì)株高模擬模型y = a/(1 + exp(b-cx)~(1/d)。根據(jù)模擬結(jié)果,將所有品種類(lèi)型分為三大類(lèi),第Ⅰ類(lèi)(棉花三葉期(相對(duì)株高值小于0.14)至十一葉期(相對(duì)株高小于0.7),株高生長(zhǎng)速率較慢)y = 0.997/(1 + exp(26.08-33.62x))~(1/8.66)(r=0.9976);第 Ⅱ類(lèi)(棉花三葉期(相對(duì)株高值在0.14~0.18之間)至十一葉期(相對(duì)株高在0.7~0.8之間),株高生長(zhǎng)速率較快):(r=0.9967);第Ⅲ類(lèi)(棉花三葉期(相對(duì)株高值大于0.18)至十一葉期(相對(duì)株高大于0.8),株高生長(zhǎng)速率最快):y = 1.02/(1 + exp(8.55—12.68x))~(1/3.25)(r=0.9973)。對(duì)模型驗(yàn)證表明,RMSE= 1.6998cm,模擬值與觀測(cè)值誤差小,能夠較好的反映干旱區(qū)滴灌條件下棉花株高的動(dòng)態(tài)變化。2.構(gòu)建了棉花葉齡動(dòng)態(tài)模擬模型通過(guò)引入葉片生理發(fā)育因子,利用歸一化處理及聚類(lèi)分析法初步探明棉花品種間相對(duì)有效積溫與主莖葉齡的關(guān)系,以8葉齡為界,對(duì)葉齡發(fā)育進(jìn)程進(jìn)行分段、分類(lèi)模擬,分別建立了基于有理函數(shù)的棉花1-8葉齡動(dòng)態(tài)模型和基于二次多項(xiàng)式、有理函數(shù)的8-13葉齡模擬模型,決定系數(shù)分別為0.9719、0.9964、0.9743、0.9733。模型驗(yàn)證表明,不同類(lèi)型品種葉齡模擬值與觀測(cè)值RMSE=0.3505,R2為0.9977,模擬值與觀測(cè)值誤差小,有理函數(shù)和二次多項(xiàng)式可以有效地預(yù)測(cè)棉花1-8葉齡及8-13葉齡的動(dòng)態(tài)變化,可通過(guò)觀測(cè)棉花葉齡生長(zhǎng)狀況為棉花精準(zhǔn)管理提供依據(jù)。3.干旱區(qū)滴灌棉花綜合管理專(zhuān)家系統(tǒng)的建立依據(jù)干旱區(qū)棉花栽培管理的主要措施和領(lǐng)域內(nèi)專(zhuān)家知識(shí),結(jié)合本研究所建立的模型和前人研究成果,建立了干旱區(qū)滴灌棉花綜合管理專(zhuān)家系統(tǒng),包括數(shù)據(jù)庫(kù)、知識(shí)庫(kù)、模型庫(kù)、推理機(jī)、知識(shí)獲取和人機(jī)接口等六部分,該系統(tǒng)實(shí)現(xiàn)了數(shù)據(jù)管理及系統(tǒng)維護(hù)、專(zhuān)家咨詢(xún)、種植方案設(shè)計(jì)、模型模擬預(yù)測(cè)、實(shí)時(shí)調(diào)控等五大功能。系統(tǒng)可以根據(jù)用戶(hù)輸入決策地點(diǎn)的氣候環(huán)境、土壤等基礎(chǔ)數(shù)據(jù),綜合運(yùn)用推理、預(yù)測(cè)、解釋等機(jī)制幫助用戶(hù)設(shè)計(jì)適宜的栽培管理方案。
[Abstract]:In recent years, with the development of science and economy, information technology has been widely used, its application in the field of agriculture has become a new technology revolution. As a branch of agricultural information technology, the expert system as the representative of the intelligent agricultural information technology's role is particularly prominent. Xinjiang, as China's largest cotton area, due to lower the level of production management, quality and yield potential of cotton did not get to play, the establishment of cotton under drip irrigation in arid area comprehensive management expert system to solve the current cotton cultivation management in water, fertilizer, low efficiency of drug use, dynamic regulation and Cultivation Techniques of cotton growth process to achieve the consulting service, it is very of great significance. This paper carried out the experiment of 29 varieties, 3 nitrogen, cotton growth period, regular surveys of plant height, leaf number, boll number data. Through data analysis, construction of cotton plant height model The leaf age model, simulation model validation and model, combined with the characteristics of cotton cultivation in Xinjiang area, the establishment of cotton under drip irrigation in arid area integrated management expert system. The main results are as follows: 1. the construction of cotton high dynamic simulation model using normalization and clustering analysis method proved the relationship among cotton varieties relatively effective accumulated temperature and the relative strain, established a relatively effective temperature of cotton relative height simulation model based on a/ (y = 1 + exp (b-cx) ~ (1/d). According to the simulation results, all varieties are divided into three categories, the first category (cotton leaf stage (relative height of less than 0.14 to eleven leaves) period (relative height of less than 0.7), plant height growth rate slower) y = 0.997/ (1 + exp (26.08-33.62x)) ~ (1/8.66) (r=0.9976); group II (cotton leaf stage (relative height in 0.14 ~ 0.18) to eleven leaf stage (relative plant height in 0.7 ~ 0.8), The height of a faster growth rate): (r=0.9967); group III (cotton leaf stage (relative height values greater than 0.18) to eleven leaf stage (relative height greater than 0.8), the height of the fastest growth rate of 1.02/ (1): y = exp + (8.55 - 12.68x) ~ (1/3.25) (r=0.9973) the model shows that). RMSE=, 1.6998cm, simulated and observed values of the error is small, can better reflect the arid area under drip irrigation cotton high dynamic.2. was constructed by introducing the physiological and developmental factor of cotton leaf dynamics simulation model, using normalization and clustering analysis method proved relatively effective temperature and the main stem when the relationship between cotton varieties, with 8 leaf age for the sector, the process of leaf development and segmentation, classification of simulation were established based on the rational function of cotton leaf 1-8 dynamic model and based on the two order polynomial, rational function of the 8-13 leaf age model, the determination coefficients were 0.9 The 719,0.9964,0.9743,0.9733. model shows that the simulation value of RMSE=0.3505 and age in different types of observations, R2 is 0.9977, the simulated and observed values of small error and dynamic changes of rational function and two polynomial can effectively predict the cotton leaf age and leaf age 1-8 8-13, can provide the basis for the growth of drip irrigation in arid area.3. cotton comprehensive management expert system establishment on the basis of arid area of cotton cultivation management measures and experts in the field of knowledge management through observation precision cotton cotton leaf age, combined with the model established by this research and previous research results, the establishment of cotton under drip irrigation in arid area comprehensive management expert system, including database, model base, knowledge base, inference engine, knowledge acquisition and man-machine interface the six part, the system realizes the data management and system maintenance, expert consultation, planting design, simulation and prediction model, real time control etc. Five functions. The system can help users design suitable cultivation management schemes based on basic data such as climate, environment and soil based on user input.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP182;S562
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田立文;崔建平;徐海江;郭仁松;林濤;;新疆棉花生產(chǎn)技術(shù)現(xiàn)狀與存在的問(wèn)題[J];安徽農(nóng)業(yè)科學(xué);2013年34期
2 方慧;杜朋朋;胡令潮;何勇;;基于可視化類(lèi)庫(kù)的植株三維形態(tài)配準(zhǔn)方法及點(diǎn)云可視化[J];農(nóng)業(yè)工程學(xué)報(bào);2013年22期
3 徐壽軍;李志剛;楊恒山;陳傳梅;趙達(dá);郭艷鋒;;大豆莖稈、葉片及豆莢生長(zhǎng)的動(dòng)態(tài)模擬[J];農(nóng)業(yè)工程學(xué)報(bào);2013年20期
4 魏廣彬;徐蕊;孫和平;段云輝;王紹華;;葉齡模型在水稻上應(yīng)用的檢驗(yàn)與比較[J];江蘇農(nóng)業(yè)學(xué)報(bào);2013年04期
5 張明艷;李紅嶺;高曉陽(yáng);楊占峰;毛紅玉;楊倩;孔彥龍;;紫花苜蓿株高和葉面積指數(shù)變化動(dòng)態(tài)及模擬模型[J];干旱區(qū)資源與環(huán)境;2013年04期
6 李紅嶺;高曉陽(yáng);張明艷;楊占峰;毛紅玉;楊倩;;大麥莖稈生長(zhǎng)動(dòng)態(tài)模擬模型[J];干旱地區(qū)農(nóng)業(yè)研究;2012年04期
7 林蔚;張雷;張國(guó)偉;孟亞利;陳兵林;王友華;周治國(guó);;濱海鹽土棉田棉花水、鹽遙感監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];棉花學(xué)報(bào);2012年02期
8 呂銀梅;哈力旦;巴哈提古麗;;新疆棉花生產(chǎn)中存在的問(wèn)題及對(duì)策[J];現(xiàn)代農(nóng)業(yè)科技;2012年05期
9 降惠;李杰;;農(nóng)業(yè)專(zhuān)家系統(tǒng)應(yīng)用現(xiàn)狀與前景展望[J];山西農(nóng)業(yè)科學(xué);2012年01期
10 張智優(yōu);曹宏鑫;陳兵林;劉巖;趙統(tǒng)敏;劉永霞;;設(shè)施番茄發(fā)育期與葉齡動(dòng)態(tài)模擬模型研究[J];中國(guó)農(nóng)業(yè)氣象;2011年04期
相關(guān)博士學(xué)位論文 前3條
1 馬富裕;棉鈴發(fā)育及纖維品質(zhì)形成的生態(tài)效應(yīng)與模擬研究[D];南京農(nóng)業(yè)大學(xué);2004年
2 張立楨;基于過(guò)程的棉花生長(zhǎng)發(fā)育模擬模型[D];南京農(nóng)業(yè)大學(xué);2003年
3 張懷志;基于知識(shí)模型的棉花管理決策支持系統(tǒng)的研究[D];南京農(nóng)業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前4條
1 蔣憶文;DSSAT模型在黑河流域的適用性評(píng)價(jià)及節(jié)水灌溉應(yīng)用研究[D];蘭州大學(xué);2016年
2 周岑岑;馬鈴薯生育期及形態(tài)建成的模擬研究[D];華中農(nóng)業(yè)大學(xué);2015年
3 齊維強(qiáng);積溫對(duì)日光溫室番茄生長(zhǎng)發(fā)育效應(yīng)的研究以及模型初探[D];西北農(nóng)林科技大學(xué);2004年
4 朱玉潔;紫花苜蓿生長(zhǎng)模擬模型(ALFASM)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2004年
,本文編號(hào):1725819
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1725819.html