天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

遙感影像特征點的精確匹配方法

發(fā)布時間:2018-04-09 07:47

  本文選題:特征點匹配 切入點:尺度比 出處:《西南交通大學》2017年碩士論文


【摘要】:影像匹配技術(shù)是影像處理的一項重要技術(shù),被廣泛應用于多個領域。在遙感領域中,遙感技術(shù)已經(jīng)應用于災害、資源環(huán)境、農(nóng)業(yè)、林業(yè)等多個方面,伴隨著遙感技術(shù)的快速發(fā)展,遙感技術(shù)的應用范圍在人類生活中將會進一步擴大。多數(shù)影像的處理與應用,需要多源數(shù)據(jù)、多幅影像的共同應用,如影像融合提高影像分別率,通過不同時段的同一地區(qū)影像疊加進行變化檢測,立體像對空中三角測量等。在多源、多幅影像處理中,影像匹配技術(shù)是一項基本的處理技術(shù),影像匹配中最常用且穩(wěn)定的特征匹配是基于影像特征點的匹配。因此,穩(wěn)定且性能好的影像特征點匹配可以實現(xiàn)影像的自動匹配,使影像得到更好的應用。影像特征點自動匹配中多采用Lowe D G提出的尺度不變特征變換(Scale-Invariant Feature Transform,SIFT)方法實現(xiàn)對影像的特征點提取并描述,進而實現(xiàn)特征點匹配。由于其性能優(yōu)越,在影像匹配中得到廣泛應用。然而,在影像紋理重復性高、影像非線性灰度差異等情況下,基于特征點描述的匹配方法可能出現(xiàn)特征點的錯誤匹配,將無法滿足實際需求。為了實現(xiàn)影像特征點正確匹配,并且獲得更多的正確匹配點對,以滿足影像匹配的需求,本論文從特征點匹配階段著手,優(yōu)化了特征點匹配性能。本論文的具體工作如下:(1)在影像特征點匹配中,影像特征點匹配階段采用特征向量的最近鄰與次近鄰比值約束,將會出現(xiàn)正確匹配點的遺漏以及錯誤匹配點的誤檢。為了實現(xiàn)正確匹配點盡量多地被檢測出來且不存在特征點的錯誤匹配,論文充分利用特征點的尺度與定位信息,以尺度比和坐標偏移約束實現(xiàn)影像特征點的匹配。(2)以尺度比和坐標偏移約束進行影像特征點的匹配,并與SIFT方法進行實驗比較。不同時間、存在模糊變化以及尺度與旋轉(zhuǎn)變化影像的實驗結(jié)果表明論文方法的最終特征點正確匹配數(shù)得到增加,匹配點的均方根誤差有所下降。(3)在影像特征點匹配中,剔除匹配點集中錯誤的匹配點對,才能保證影像匹配的正確性。為了剔除誤匹配的特征點,論文分析了特征點的空間關(guān)系,將空間關(guān)系融入到特征點匹配中,保證特征點集中匹配點的正確性。(4)論文在初始特征匹配點集的基礎上,融入特征點的空間關(guān)系對初始點集進行優(yōu)化,并進行了多組實驗驗證論文方法的可靠性。對存在尺度與旋轉(zhuǎn)、模糊與尺度變化、異源的影像進行實驗,并與GTM方法、RSOC方法進行實驗對比,實驗結(jié)果表明論文方法有較高的穩(wěn)定性。
[Abstract]:Image matching is an important technology in image processing, which is widely used in many fields.In the field of remote sensing, remote sensing technology has been applied to disasters, resources, environment, agriculture, forestry and other aspects. With the rapid development of remote sensing technology, the application of remote sensing technology in human life will be further expanded.The processing and application of most images require the common application of multi-source data and multi-image, such as image fusion to improve the image separation rate, image superposition of different periods of time to detect changes, stereoscopic aerial triangulation and so on.In multi-source and multi-image processing, image matching technology is a basic processing technology. The most common and stable feature matching in image matching is based on image feature points.Therefore, the feature point matching with stable and good performance can realize automatic image matching and make the image be better applied.Scale-Invariant Feature transform (sift) method proposed by Lowe D G is used to extract and describe feature points in image feature points automatic matching, and then feature point matching is realized.Because of its superior performance, it is widely used in image matching.However, in the case of high texture repeatability and nonlinear gray difference, the matching method based on the description of feature points may have a false matching of feature points, which will not meet the actual needs.In order to achieve the correct matching of image feature points and obtain more correct matching point pairs to meet the needs of image matching, this paper starts with the feature point matching stage, and optimizes the feature point matching performance.The specific work of this paper is as follows: (1) in the image feature point matching, the nearest neighbor and the next nearest neighbor ratio of the feature vector are used in the image feature point matching stage, and the omission of the correct matching point and the false detection of the wrong matching point will occur.In order to realize the error matching of correct matching points which are detected as much as possible and there are no feature points, the paper makes full use of the scale and location information of feature points.The scale ratio and coordinate migration constraints are used to match the image feature points. (2) the scale ratio and coordinate migration constraints are used to match the image feature points, and the experimental results are compared with the SIFT method.At different times, the experimental results show that the correct matching number of the final feature points is increased, and the root mean square error (RMS) error of the matching points is decreased in the image feature point matching.The correctness of image matching can be ensured only by eliminating the matching point pairs of mismatch points in the set of matching points.In order to eliminate the feature points of mismatch, the spatial relationship of feature points is analyzed, and the spatial relationship is integrated into the matching of feature points to ensure the correctness of matching points in feature points set.The initial point set is optimized with the spatial relationship of feature points, and the reliability of the method is verified by many experiments.Experiments are carried out on images with scale and rotation, fuzzy and scale changes, and heterogenous images, and compared with GTM method. The experimental results show that the proposed method has high stability.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP751

【參考文獻】

相關(guān)期刊論文 前10條

1 盧鴻波;孫愿;張志敏;;采用旋轉(zhuǎn)匹配的二進制局部描述子[J];中國圖象圖形學報;2013年10期

2 葉沅鑫;單杰;熊金鑫;董來根;;一種結(jié)合SIFT和邊緣信息的多源遙感影像匹配方法[J];武漢大學學報(信息科學版);2013年10期

3 謝錦;蔡自興;汪魯才;;基于Gabor多尺度空間的不變興趣點檢測[J];計算機應用研究;2014年01期

4 侯毅;周石琳;雷琳;趙鍵;;基于Gabor濾波器組的多特征尺度不變特征提取方法[J];電子學報;2013年06期

5 戴激光;宋偉東;賈永紅;張謙;;一種新的異源高分辨率光學衛(wèi)星遙感影像自動匹配算法[J];測繪學報;2013年01期

6 唐朝偉;肖健;邵艷清;苗光勝;;一種改進的SIFT描述子及其性能分析[J];武漢大學學報(信息科學版);2012年01期

7 徐婉瑩;黃新生;劉育浩;張巍;;一種基于Gabor小波的局部特征尺度提取方法[J];中國圖象圖形學報;2011年01期

8 雷琳;王壯;粟毅;;基于多尺度Gabor濾波器組的不變特征點提取新方法[J];電子學報;2009年10期

9 李芳芳;肖本林;賈永紅;毛星亮;;SIFT算法優(yōu)化及其用于遙感影像自動配準[J];武漢大學學報(信息科學版);2009年10期

10 吳昌柱;王慶;周興社;;基于相位一致性的興趣點檢測方法[J];西北工業(yè)大學學報;2006年02期

,

本文編號:1725499

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1725499.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶59ca1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com