跨平臺工業(yè)機器人離線編程系統(tǒng)研究與開發(fā)
本文選題:離線編程 切入點:跨平臺 出處:《廣東工業(yè)大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:工業(yè)機器人的編程方式主要有示教再現(xiàn)編程和離線編程,其可編程能力決定了其功能的靈活性和智能性。目前國內(nèi)廣泛使用的機器人示教再現(xiàn)編程方式因為其編程效率低下,難以滿足實際生產(chǎn)需求;而國外普遍流行的機器人離線編程系統(tǒng)均基于PC,不能跟機器人控制系統(tǒng)結(jié)合形成閉環(huán),另外軌跡規(guī)劃算法耗時長。針對以上存在的問題,本文初次嘗試開發(fā)了一套能滿足實際生產(chǎn)需要的工業(yè)機器人跨平臺離線編程系統(tǒng),為以后把離線編程整合到機器人控制系統(tǒng)奠定了基礎(chǔ)。本文主要工作如下:針對市場上眾多離線編程軟件對硬件平臺的高依賴性,本文提出開發(fā)一套能滿足嵌入式移動端的跨平臺離線編程系統(tǒng)。對眾多開發(fā)平臺進行了大量的對比分析后,選定Unity3D軟件作為本系統(tǒng)的開發(fā)平臺。Unity3D具備眾多優(yōu)勢,如完備的引擎功能、高效的工作流程、逼真的畫面效果以及跨平臺發(fā)布等,為本文開發(fā)跨平臺工業(yè)機器人離線編程系統(tǒng)奠定了平臺基礎(chǔ)。針對目前工業(yè)上廣泛使用的一類六軸串聯(lián)工業(yè)機器人,使用D-H參數(shù)法對其建立了數(shù)學(xué)模型,并推導(dǎo)了該類型機器人的正運動學(xué)、逆運動學(xué)方程。另外,針對運動學(xué)逆解存在多解問題,引入了基于最小轉(zhuǎn)動量的評價函數(shù),最后編程實現(xiàn)并進行了仿真驗證,為離線編程系統(tǒng)的軌跡規(guī)劃奠定了理論基礎(chǔ)。本文提出了一種機器人空間圓弧插補算法,利用把空間圓弧轉(zhuǎn)化為平面圓弧進行處理,再通過逆轉(zhuǎn)化來分配各個軸向的插補量。另外,本離線編程系統(tǒng)還針對教育領(lǐng)域加入了TCP標定功能,推導(dǎo)了用三點法、五點法求出TCP的位置與姿態(tài)的算法,并且跟實體機器人的TCP標定算法進行了實驗對比驗證。接著還實現(xiàn)了固定TCP模式與外部TCP模式下的運動軌跡規(guī)劃算法。本文討論了當前變位機與機器人七軸聯(lián)動軌跡規(guī)劃算法的原理及其計算量大、耗資源等不足。針對此算法的不足,本文提出了一種快速搜索算法,把變位機作為主動臂,工業(yè)機器人作為從動臂,基于三次多項式擬合姿態(tài)曲線,得出路徑點對應(yīng)的每個關(guān)節(jié)的角度。本算法具有響應(yīng)速度快、計算精確等優(yōu)勢,并且通過實驗驗證適用于軌跡形狀不是特別復(fù)雜的開閉環(huán)曲線。針對跨平臺離線編程系統(tǒng)的編程實現(xiàn),本文先進行系統(tǒng)架構(gòu)的分析與搭建,再結(jié)合自主設(shè)計的人機交互設(shè)計進行了系統(tǒng)開發(fā),并使用該系統(tǒng)在裝有Android系統(tǒng)的可移動終端進行了運動仿真與軌跡規(guī)劃。最后,通過繪圖、打磨和焊接應(yīng)用進行實驗驗證,結(jié)果表明本文所開發(fā)的跨平臺離線編程系統(tǒng)能有效的進行工業(yè)機器人離線編程,并且具有一定的實用意義,可以滿足生產(chǎn)現(xiàn)場對跨平臺的需要。
[Abstract]:The programming methods of industrial robot are mainly teaching reproducing programming and off-line programming, and its programmable ability determines the flexibility and intelligence of its functions. At present, the robot teaching and reproducing programming mode is widely used in our country because of its low programming efficiency. It is difficult to meet the actual production demand, but the common overseas robot off-line programming system is based on PC-based, can not be combined with the robot control system to form a closed loop, in addition, the trajectory planning algorithm takes a long time. This paper first tries to develop a cross-platform off-line programming system for industrial robots, which can meet the actual production needs. It lays a foundation for integrating offline programming into robot control system. The main work of this paper is as follows: aiming at the high dependence of many off-line programming software on hardware platform in the market, This paper proposes to develop a cross-platform off-line programming system that can satisfy the embedded mobile terminal. After a lot of comparative analysis of many development platforms, Unity3D software is chosen as the development platform of the system. The Unity3D has many advantages. Such as complete engine functions, efficient workflow, lifelike screen effect and cross-platform release, etc. This paper establishes the platform foundation for the development of off-line programming system of cross-platform industrial robot. Aiming at a class of six-axis series industrial robot which is widely used in industry at present, the mathematical model is established by using D-H parameter method. The forward kinematics and inverse kinematics equations of this kind of robot are derived. In addition, an evaluation function based on minimum rotation is introduced to solve the problem of multiple solutions in inverse kinematics solution. This paper presents a space arc interpolation algorithm for robot, which is processed by transforming space arc into plane arc. In addition, the off-line programming system also adds TCP calibration function to the field of education, and deduces an algorithm to calculate the position and attitude of TCP by three-point method and five-point method. The algorithm is compared with the TCP calibration algorithm of the solid robot. Then, the motion trajectory planning algorithm based on the fixed TCP mode and the external TCP mode is realized. This paper discusses the linkage between the current position changer and the robot with seven axes. The principle of trajectory planning algorithm and its calculation amount is very large. Aiming at the shortage of this algorithm, a fast searching algorithm is proposed in this paper, in which the positioner is used as the active arm and the industrial robot as the follower, and the attitude curve is fitted based on cubic polynomial. The angle of each joint corresponding to the path point is obtained. This algorithm has the advantages of fast response speed, accurate calculation, and so on. And it is proved by experiment that the curve is not especially complicated. In order to realize the cross-platform off-line programming system, this paper analyzes and builds the architecture of the system. Then, the system is developed based on the human-computer interaction design, and the motion simulation and trajectory planning are carried out on the mobile terminal with Android system. Finally, the experiments are carried out through drawing, polishing and welding applications. The results show that the cross-platform off-line programming system developed in this paper can effectively carry out off-line programming of industrial robot, and has certain practical significance, and can meet the needs of cross-platform in production field.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP242.2
【參考文獻】
相關(guān)期刊論文 前5條
1 熊爍;葉伯生;蔣明;;機器人工具坐標系標定算法研究[J];機械與電子;2012年06期
2 唐榮俊;陳建平;;通用變位機與機器人圓弧焊接的協(xié)調(diào)控制[J];機電一體化;2012年01期
3 鄭榮;;機器人離線編程系統(tǒng)設(shè)計與研究[J];世界制造技術(shù)與裝備市場;2010年05期
4 劉圣祥;高洪明;張廣軍;吳林;何廣忠;;弧焊機器人離線編程與仿真技術(shù)的研究現(xiàn)狀及發(fā)展趨勢[J];焊接;2007年07期
5 唐新華,Paul Drews;機器人三維可視化離線編程和仿真系統(tǒng)[J];焊接學(xué)報;2005年02期
相關(guān)博士學(xué)位論文 前3條
1 卜遲武;風(fēng)機葉片打磨機器人的控制研究[D];哈爾濱工程大學(xué);2012年
2 張華軍;大厚板高強鋼雙面雙弧焊新工藝及機器人自動化焊接技術(shù)[D];哈爾濱工業(yè)大學(xué);2009年
3 何廣忠;機器人弧焊離線編程系統(tǒng)及其自動編程技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 姜家高;應(yīng)用于焊接機器人的變位機控制研究[D];沈陽大學(xué);2015年
2 陳冠林;基于六自由度機器人的四工位砂帶磨削系統(tǒng)開發(fā)[D];廣東工業(yè)大學(xué);2015年
3 戴雷;六軸機器人離線編程與仿真系統(tǒng)設(shè)計與實現(xiàn)[D];武漢科技大學(xué);2015年
4 劉哲;七自由度打磨機器人操作臂機構(gòu)分析與運動仿真[D];遼寧工業(yè)大學(xué);2015年
5 周祥;工業(yè)機器人工具及工件坐標系的標定研究[D];南京理工大學(xué);2015年
6 畢志強;工業(yè)機器人協(xié)調(diào)運動規(guī)劃與研究[D];華南理工大學(xué);2014年
7 孫斌;六軸工業(yè)機器人的離線編程與仿真系統(tǒng)研究[D];太原理工大學(xué);2014年
8 鄧休;雙機器人協(xié)調(diào)運動規(guī)劃與研究[D];華南理工大學(xué);2014年
9 黎潤偉;面向復(fù)雜曲面加工的工業(yè)機器人離線編程系統(tǒng)研究[D];華南理工大學(xué);2014年
10 羅輝;焊接機器人與變位機的協(xié)調(diào)運動規(guī)劃[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號:1622710
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1622710.html