基于壓電驅(qū)動的變焦距液體透鏡的研究
[Abstract]:With the development of modern optics and micro-electro-mechanical system (MEMS), precision optical manufacturing and modern industrial equipment have become more and more demanding for the precision and imaging quality of zoom lens, this has put forward very strict requirements on the traditional mechanical system zoom lens, In order to solve the problems existing in the zoom lens, the micro-optical liquid lens is a miniaturized and miniaturized focal length lens which has been developed in recent years. it uses liquid as an optical medium to control and change the liquid geometry or index of refraction using micro-fluidic technology to achieve the purpose of zooming. Most of the liquid lenses studied by previous scholars adopt water solution of deionized water or inorganic salt as liquid material. but the water is volatile, the thermal stability is poor under natural conditions, the liquid temperature range is narrow, and therefore, the novel liquid light-transmitting coal quality capable of overcoming the problems is urgently needed. Compared with other volatile organic solvents, the ionic liquid has the characteristics of non-combustible, high heat capacity, good thermal stability, wide liquid range, high ionic conductivity, wide electrochemical window, stable property, small vapor pressure, no toxicity, environmental protection and the like. This paper mainly focuses on the following aspects: 1. In this paper, ionic liquid is used as the medium of liquid lens, and the influence of ionic liquid's contact angle with the change of liquid volume is discussed, and the influence of ionic liquid dosage, lens size and thickness of insulating layer on the ionic liquid zoom lens is revealed. The contact angle of ionic liquid with different density and surface tension and the contact angle of ionic liquid and dielectric layer changes with time. The influence of ionic liquid surface tension, ionic liquid type and ionic liquid on the liquid zoom lens is investigated. Through the analysis of the comparison experiment with the surface tension of deionized water, it provides the basis for the application of ionic liquid in liquid zoom lens and the optimization of liquid lens performance. In order to make the lens have smaller volume, wide operating temperature range and large zoom range, a novel single-vibrator piezoelectric driven ion liquid zoom lens is proposed. The finite element simulation software (FEM) was used to statics and modal analysis of the liquid lens. The resonant frequency and vibration displacement of single-vibrator liquid lens were studied. The results show that the vibration energy is maximized when the single-vibrator lens works in the resonant state, which is beneficial to the formation of larger radius of curvature. Based on the theory of piezoelectric vibration, the vibration modes and frequency response of different structural lenses are analyzed. on the basis of the novel piezoelectric driving single-vibrator ion liquid zoom lens, the single-vibrator liquid lens is changed into a liquid lens of a composite transducer system according to the principle of the transducer, Three sandwich transducer elements with piezoelectric ultrasonic transducer structure are designed by using the basic theory of piezoelectric effect and the vibration theory of piezoelectric ceramics. Finite element software (FEM) is used to analyze the designed structure, and the relationship between lens vibrator and resonant frequency of vibration system is studied. The use of ionic liquid as a liquid lens light-transmitting medium can effectively overcome the problem of liquid volatilization and can adapt to a wider temperature range. The advantage of its use in extreme environments such as high temperatures is illustrated by comparison with conventional de-ionized water. Due to the different directions and sizes of piezoelectric ceramics in different polarization directions, the influence of material, structure and size parameters of piezoelectric driven liquid zoom lens on variable focal length liquid lens is discussed. For practical applications of liquid zoom lenses, solutions are provided for liquid lenses that can be used for extreme conditions such as lower and higher temperatures. The rules and test results obtained by the above design institute provide some theoretical basis and reference value for the application of ultrasonic technology in liquid zoom lens.
【學(xué)位授予單位】:蘇州科技學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH74
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周慧源;;液體透鏡的現(xiàn)狀及發(fā)展前景[J];光機(jī)電信息;2008年05期
2 胡興軍;;液體透鏡將引導(dǎo)一場光學(xué)鏡頭革命[J];照相機(jī);2009年02期
3 鄭浩斌;何焰藍(lán);丁道一;;液體透鏡的誕生和發(fā)展[J];物理與工程;2008年04期
4 吳俊;夏軍;王保平;;基于金屬側(cè)壁結(jié)構(gòu)的電潤濕液體透鏡[J];光學(xué)技術(shù);2009年03期
5 辛企明;;液體透鏡的發(fā)展趨勢[J];光學(xué)儀器;2010年06期
6 李正達(dá);楊波;;基于改進(jìn)禁忌搜索算法的液體透鏡系統(tǒng)優(yōu)化設(shè)計[J];光學(xué)學(xué)報;2012年08期
7 熊淵琳;彭潤玲;陳家璧;莊松林;;液體密度對雙液體透鏡性能的影響[J];光學(xué)儀器;2008年04期
8 ;專利[J];光機(jī)電信息;1995年03期
9 陳陶;梁忠誠;徐榮青;;50Hz交流電控制的可變焦液體透鏡[J];激光與光電子學(xué)進(jìn)展;2012年04期
10 張運波;侯文玫;鄭繼紅;;采用變焦液體透鏡的共焦檢測系統(tǒng)的設(shè)計與仿真[J];應(yīng)用光學(xué);2012年01期
相關(guān)會議論文 前3條
1 張宏建;張薇;田維堅;李立英;王樂;孫劍;;液體透鏡自重變形引起波像差的有限元分析[A];2009年先進(jìn)光學(xué)技術(shù)及其應(yīng)用研討會論文集(下冊)[C];2009年
2 彭潤玲;繩金俠;陳家璧;莊松林;;基于電濕效應(yīng)的一種新型變焦透鏡的研究[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
3 陳陶;;50Hz交流電控制的可變焦液體透鏡[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
相關(guān)重要報紙文章 前1條
1 鄒曉文 本報記者 李立平;法國VARIOPTIC公司將加快液體透鏡技術(shù)推廣速度[N];大眾科技報;2007年
相關(guān)博士學(xué)位論文 前4條
1 張鷹;基于液體透鏡的變焦距光學(xué)系統(tǒng)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2012年
2 張薇;液體透鏡技術(shù)及其在微型變焦距系統(tǒng)中的應(yīng)用[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2009年
3 胡曉東;離子液體的電致驅(qū)動及變焦離子液體透鏡的研究[D];蘭州大學(xué);2012年
4 劉永明;光學(xué)精密透鏡的光力耦合分析與優(yōu)化設(shè)計[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2014年
相關(guān)碩士學(xué)位論文 前6條
1 楊彬;高速變焦液體仿生透鏡的成形機(jī)理研究[D];長春理工大學(xué);2014年
2 王評;基于介電潤濕技術(shù)液體透鏡的變焦光學(xué)系統(tǒng)設(shè)計及性能分析[D];南京郵電大學(xué);2015年
3 劉嬌;基于壓電驅(qū)動的變焦距液體透鏡的研究[D];蘇州科技學(xué)院;2015年
4 郝麗麗;基于電潤濕效應(yīng)的液體透鏡性能的測試與分析[D];南京郵電大學(xué);2013年
5 馬晨;便攜式眼底相機(jī)光學(xué)系統(tǒng)的設(shè)計方法研究[D];北京理工大學(xué);2014年
6 劉一全;液態(tài)透鏡固相旋轉(zhuǎn)曲面界面接觸角的分析研究[D];北京理工大學(xué);2015年
,本文編號:2276862
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/2276862.html