天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 儀器儀表論文 >

基于壓電驅(qū)動的變焦距液體透鏡的研究

發(fā)布時間:2018-10-17 13:49
【摘要】:隨著現(xiàn)代光學(xué)與微機(jī)電系統(tǒng)(MEMS)的發(fā)展,精密光學(xué)制造與現(xiàn)代工業(yè)設(shè)備等對變焦距透鏡的精密性和成像質(zhì)量的要求越來越高,這對傳統(tǒng)機(jī)械系統(tǒng)變焦透鏡提出了非常苛刻的要求,微光學(xué)液體透鏡的提出正是為解決變焦透鏡目前存在的問題,于近年中發(fā)展起來的小型化、微型化變焦距透鏡。它采用液體作為光學(xué)介質(zhì),利用微流體技術(shù)控制并改變液體幾何形狀或折射率從而實現(xiàn)變焦的目的。之前學(xué)者研究的液體透鏡大多采用去離子水或無機(jī)鹽的水溶液作為液體材料。但是水易揮發(fā),自然條件下熱穩(wěn)定性較差,液態(tài)溫度范圍較窄,因此急需尋找能克服上述問題的新型液體透光煤質(zhì)。作為新型的綠色環(huán)保材料,離子液體與其他易揮發(fā)的有機(jī)溶劑相比,具有不可燃、熱容率大、熱穩(wěn)定性好、液態(tài)范圍寬、離子的電導(dǎo)率高、電化學(xué)窗口寬、性質(zhì)穩(wěn)定、蒸汽壓小,無毒環(huán)保等特點。本文的研究主要從以下幾個方面著手:1.本文使用離子液體作為液體透鏡媒質(zhì),探討離子液體的接觸角隨液體體積變化的規(guī)律,揭示離子液體的用量、透鏡尺寸、絕緣層厚度等因素對離子液體變焦透鏡的影響。對不同密度及表面張力的離子液體與離子液體和介質(zhì)層接觸過程中接觸角隨時間變化的關(guān)系進(jìn)行探究。探究離子液體表面張力、離子液體的種類及離子液體的用量對液體變焦透鏡的影響。通過與去離子水的表面張力的對比實驗的分析,為離子液體在液體變焦透鏡的應(yīng)用及液體透鏡性能優(yōu)化等方面提供依據(jù)。2.對比常用液體透鏡驅(qū)動方式及其機(jī)械結(jié)構(gòu),為使透鏡具有較小體積,較寬工作溫度范圍,較大變焦范圍,提出了一種新型單振子壓電驅(qū)動離子液體變焦透鏡。利用有限元仿真軟件(FEM)對液體透鏡進(jìn)行了靜力學(xué)和模態(tài)分析。對單振子液體透鏡的諧振頻率,振動位移等進(jìn)行了試驗研究。研究表明該單振子透鏡工作在諧振狀態(tài)時振動能量最大,有利于較大曲率半徑的形成。根據(jù)壓電振動理論對不同結(jié)構(gòu)透鏡的振動模態(tài)及頻率響應(yīng)進(jìn)行分析。3.在新型壓電驅(qū)動單振子離子液體變焦透鏡的基礎(chǔ)上,為得到更大振動位移,依據(jù)換能器的原理,將單振子液體透鏡改為復(fù)合換能器系統(tǒng)液體透鏡,運用壓電效應(yīng)基本理論及壓電陶瓷的振動理論設(shè)計三種具有壓電超聲換能器結(jié)構(gòu)的夾心式換能器振子。并利用有限元軟件(FEM)對所設(shè)計的結(jié)構(gòu)進(jìn)行仿真分析,研究不同尺寸透鏡振子與振動系統(tǒng)諧振頻率的關(guān)系,探討相應(yīng)變化規(guī)律。使用離子液體作為液體透鏡透光介質(zhì)能夠有效的克服液體揮發(fā)的問題,并且能夠適應(yīng)更寬的溫度范圍。通過與傳統(tǒng)的去離子水進(jìn)行比較,說明其在高溫等極端環(huán)境中使用時的優(yōu)勢。由于不同極化方向壓電陶瓷的振動形變的方向和大小不同,探討壓電驅(qū)動式液體變焦透鏡的材料,結(jié)構(gòu)及其尺寸參數(shù)等對變焦距液體透鏡的影響。針對液體變焦透鏡的實際應(yīng)用,為可用于較低及較高溫度等極端條件的液體透鏡提供解決方案。上述設(shè)計研究所獲得的規(guī)律和測試結(jié)果對于超聲技術(shù)在液體變焦透鏡方面的應(yīng)用提供一定的理論依據(jù)和參考價值。
[Abstract]:With the development of modern optics and micro-electro-mechanical system (MEMS), precision optical manufacturing and modern industrial equipment have become more and more demanding for the precision and imaging quality of zoom lens, this has put forward very strict requirements on the traditional mechanical system zoom lens, In order to solve the problems existing in the zoom lens, the micro-optical liquid lens is a miniaturized and miniaturized focal length lens which has been developed in recent years. it uses liquid as an optical medium to control and change the liquid geometry or index of refraction using micro-fluidic technology to achieve the purpose of zooming. Most of the liquid lenses studied by previous scholars adopt water solution of deionized water or inorganic salt as liquid material. but the water is volatile, the thermal stability is poor under natural conditions, the liquid temperature range is narrow, and therefore, the novel liquid light-transmitting coal quality capable of overcoming the problems is urgently needed. Compared with other volatile organic solvents, the ionic liquid has the characteristics of non-combustible, high heat capacity, good thermal stability, wide liquid range, high ionic conductivity, wide electrochemical window, stable property, small vapor pressure, no toxicity, environmental protection and the like. This paper mainly focuses on the following aspects: 1. In this paper, ionic liquid is used as the medium of liquid lens, and the influence of ionic liquid's contact angle with the change of liquid volume is discussed, and the influence of ionic liquid dosage, lens size and thickness of insulating layer on the ionic liquid zoom lens is revealed. The contact angle of ionic liquid with different density and surface tension and the contact angle of ionic liquid and dielectric layer changes with time. The influence of ionic liquid surface tension, ionic liquid type and ionic liquid on the liquid zoom lens is investigated. Through the analysis of the comparison experiment with the surface tension of deionized water, it provides the basis for the application of ionic liquid in liquid zoom lens and the optimization of liquid lens performance. In order to make the lens have smaller volume, wide operating temperature range and large zoom range, a novel single-vibrator piezoelectric driven ion liquid zoom lens is proposed. The finite element simulation software (FEM) was used to statics and modal analysis of the liquid lens. The resonant frequency and vibration displacement of single-vibrator liquid lens were studied. The results show that the vibration energy is maximized when the single-vibrator lens works in the resonant state, which is beneficial to the formation of larger radius of curvature. Based on the theory of piezoelectric vibration, the vibration modes and frequency response of different structural lenses are analyzed. on the basis of the novel piezoelectric driving single-vibrator ion liquid zoom lens, the single-vibrator liquid lens is changed into a liquid lens of a composite transducer system according to the principle of the transducer, Three sandwich transducer elements with piezoelectric ultrasonic transducer structure are designed by using the basic theory of piezoelectric effect and the vibration theory of piezoelectric ceramics. Finite element software (FEM) is used to analyze the designed structure, and the relationship between lens vibrator and resonant frequency of vibration system is studied. The use of ionic liquid as a liquid lens light-transmitting medium can effectively overcome the problem of liquid volatilization and can adapt to a wider temperature range. The advantage of its use in extreme environments such as high temperatures is illustrated by comparison with conventional de-ionized water. Due to the different directions and sizes of piezoelectric ceramics in different polarization directions, the influence of material, structure and size parameters of piezoelectric driven liquid zoom lens on variable focal length liquid lens is discussed. For practical applications of liquid zoom lenses, solutions are provided for liquid lenses that can be used for extreme conditions such as lower and higher temperatures. The rules and test results obtained by the above design institute provide some theoretical basis and reference value for the application of ultrasonic technology in liquid zoom lens.
【學(xué)位授予單位】:蘇州科技學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH74

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周慧源;;液體透鏡的現(xiàn)狀及發(fā)展前景[J];光機(jī)電信息;2008年05期

2 胡興軍;;液體透鏡將引導(dǎo)一場光學(xué)鏡頭革命[J];照相機(jī);2009年02期

3 鄭浩斌;何焰藍(lán);丁道一;;液體透鏡的誕生和發(fā)展[J];物理與工程;2008年04期

4 吳俊;夏軍;王保平;;基于金屬側(cè)壁結(jié)構(gòu)的電潤濕液體透鏡[J];光學(xué)技術(shù);2009年03期

5 辛企明;;液體透鏡的發(fā)展趨勢[J];光學(xué)儀器;2010年06期

6 李正達(dá);楊波;;基于改進(jìn)禁忌搜索算法的液體透鏡系統(tǒng)優(yōu)化設(shè)計[J];光學(xué)學(xué)報;2012年08期

7 熊淵琳;彭潤玲;陳家璧;莊松林;;液體密度對雙液體透鏡性能的影響[J];光學(xué)儀器;2008年04期

8 ;專利[J];光機(jī)電信息;1995年03期

9 陳陶;梁忠誠;徐榮青;;50Hz交流電控制的可變焦液體透鏡[J];激光與光電子學(xué)進(jìn)展;2012年04期

10 張運波;侯文玫;鄭繼紅;;采用變焦液體透鏡的共焦檢測系統(tǒng)的設(shè)計與仿真[J];應(yīng)用光學(xué);2012年01期

相關(guān)會議論文 前3條

1 張宏建;張薇;田維堅;李立英;王樂;孫劍;;液體透鏡自重變形引起波像差的有限元分析[A];2009年先進(jìn)光學(xué)技術(shù)及其應(yīng)用研討會論文集(下冊)[C];2009年

2 彭潤玲;繩金俠;陳家璧;莊松林;;基于電濕效應(yīng)的一種新型變焦透鏡的研究[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年

3 陳陶;;50Hz交流電控制的可變焦液體透鏡[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年

相關(guān)重要報紙文章 前1條

1 鄒曉文 本報記者 李立平;法國VARIOPTIC公司將加快液體透鏡技術(shù)推廣速度[N];大眾科技報;2007年

相關(guān)博士學(xué)位論文 前4條

1 張鷹;基于液體透鏡的變焦距光學(xué)系統(tǒng)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2012年

2 張薇;液體透鏡技術(shù)及其在微型變焦距系統(tǒng)中的應(yīng)用[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2009年

3 胡曉東;離子液體的電致驅(qū)動及變焦離子液體透鏡的研究[D];蘭州大學(xué);2012年

4 劉永明;光學(xué)精密透鏡的光力耦合分析與優(yōu)化設(shè)計[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2014年

相關(guān)碩士學(xué)位論文 前6條

1 楊彬;高速變焦液體仿生透鏡的成形機(jī)理研究[D];長春理工大學(xué);2014年

2 王評;基于介電潤濕技術(shù)液體透鏡的變焦光學(xué)系統(tǒng)設(shè)計及性能分析[D];南京郵電大學(xué);2015年

3 劉嬌;基于壓電驅(qū)動的變焦距液體透鏡的研究[D];蘇州科技學(xué)院;2015年

4 郝麗麗;基于電潤濕效應(yīng)的液體透鏡性能的測試與分析[D];南京郵電大學(xué);2013年

5 馬晨;便攜式眼底相機(jī)光學(xué)系統(tǒng)的設(shè)計方法研究[D];北京理工大學(xué);2014年

6 劉一全;液態(tài)透鏡固相旋轉(zhuǎn)曲面界面接觸角的分析研究[D];北京理工大學(xué);2015年

,

本文編號:2276862

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/2276862.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1c17e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com