基于改進(jìn)RBF網(wǎng)絡(luò)的潮汐預(yù)報(bào)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
[Abstract]:Tide is one of the most important components of marine environment. Tidal forecasting is of great significance in the fields of maritime traffic, port construction and tidal energy utilization. With the continuous development of the shipping industry and the requirements of navigation safety and efficiency, A higher requirement for the accuracy of tidal numerical prediction is also put forward. At present, the calculation of tidal component by harmonic constant is the main method of tidal prediction. Some people use the historical data of tide to predict the tide by nonlinear mathematical methods, such as chaos theory, neural network, support vector machine and so on. When the tidal prediction is carried out by the traditional analysis method, the accuracy of the sea area prediction under the influence of complex environmental factors is obviously decreased because the influence of the tidal astronomical tide is only taken into account. The application of neural network to tidal prediction is a new research direction in recent years. Radial basis function (RBF) neural network is widely used in pattern recognition and system prediction. In this paper, RBF neural network is applied to tidal prediction and the results are discussed. At the same time, the traditional RBF neural network lacks the necessary reasoning process and basis, and some parameters need to be determined according to the specific problems. Aiming at the above problems, the paper optimizes the weight of RBF neural network by using particle swarm optimization (PSO) (PSO) optimization algorithm. Based on the center and width of radial basis function, a PSO-RBF neural network model for tidal prediction is established. The model is based on the measured tidal data to carry out real-time tidal prediction, and compared with other commonly used optimization algorithms, the results show that the prediction accuracy is high. The specific contents and conclusions of this paper are as follows: 1. A tidal prediction model using RBF neural network based on particle swarm optimization is established. Ten parameters of the two most important celestial bodies (the sun and the moon) which affect the tide are used to predict the tide. A tidal prediction and display system is set up, which can be used to predict and view the tide in real time. In this paper, the tidal data of a port which is monitored for three months is analyzed and forecasted as historical data, and the tidal value of the whole point in the next month is predicted, and the results are more accurate.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TH766
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫智偉;白俊強(qiáng);華俊;尹戈玲;;基于支持向量回歸代理模型的氣動(dòng)力優(yōu)化設(shè)計(jì)[J];航空工程進(jìn)展;2015年02期
2 孫美仙;程勇;滕駿華;梁穎祺;胡楠;;短期潮汐預(yù)報(bào)探索[J];海洋預(yù)報(bào);2014年03期
3 石雪冬;鐘煥良;;短期潮汐觀測(cè)深度基準(zhǔn)面確定研究[J];測(cè)繪科學(xué);2014年01期
4 趙林;唐猛;;基于物聯(lián)網(wǎng)技術(shù)的港口物理海洋環(huán)境要素實(shí)時(shí)監(jiān)測(cè)與預(yù)報(bào)系統(tǒng)[J];信息與電腦(理論版);2012年10期
5 邢廣成;強(qiáng)天偉;;人工神經(jīng)網(wǎng)絡(luò)的發(fā)展與應(yīng)用[J];科技風(fēng);2012年15期
6 張樂(lè)文;張德永;邱道宏;;徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)在地應(yīng)力場(chǎng)反演中的應(yīng)用[J];巖土力學(xué);2012年03期
7 李燕初;許德偉;阮海林;;用混沌理論提高潮汐預(yù)報(bào)的準(zhǔn)確度[J];海洋學(xué)報(bào)(中文版);2012年01期
8 唐巖;暴景陽(yáng);劉雁春;張立華;;短期潮汐潮流數(shù)據(jù)的正交潮響應(yīng)分析研究[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2010年10期
9 李明昌;梁書(shū)秀;孫昭晨;張光玉;;基于數(shù)據(jù)驅(qū)動(dòng)模型的潮位和潮流預(yù)測(cè)方法研究[J];北京理工大學(xué)學(xué)報(bào);2010年07期
10 歐素英;楊清書(shū);;人工神經(jīng)網(wǎng)絡(luò)模型在航道、港口潮水位預(yù)報(bào)中的應(yīng)用[J];水利水運(yùn)工程學(xué)報(bào);2008年02期
相關(guān)博士學(xué)位論文 前3條
1 張昭昭;模塊化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)自組織設(shè)計(jì)方法[D];北京工業(yè)大學(xué);2013年
2 鄭立松;風(fēng)暴潮—天文潮—波浪耦合模型及其在杭州灣的應(yīng)用[D];清華大學(xué);2010年
3 李曉磊;一種新型的智能優(yōu)化方法-人工魚(yú)群算法[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 白云權(quán);基于網(wǎng)絡(luò)服務(wù)的深圳港海洋水文系統(tǒng)構(gòu)建[D];大連海事大學(xué);2014年
2 賈庭芳;基于粒子群優(yōu)化的離散多目標(biāo)優(yōu)化算法[D];太原科技大學(xué);2011年
3 陳應(yīng)俊;多目標(biāo)優(yōu)化的模塊化神經(jīng)網(wǎng)絡(luò)模型研究[D];華南理工大學(xué);2011年
4 劉天舒;BP神經(jīng)網(wǎng)絡(luò)的改進(jìn)研究及應(yīng)用[D];東北農(nóng)業(yè)大學(xué);2011年
5 高秀敏;渤海潮波伴隨同化研究[D];國(guó)家海洋局第一海洋研究所;2010年
6 馬鵬飛;幾個(gè)不同類(lèi)型的Hopfield神經(jīng)網(wǎng)絡(luò)分析[D];東北林業(yè)大學(xué);2010年
7 馮帥;合作型模塊化神經(jīng)網(wǎng)絡(luò)的研究與應(yīng)用[D];武漢理工大學(xué);2008年
8 王闖;人工魚(yú)群算法的分析及改進(jìn)[D];大連海事大學(xué);2008年
9 吳昌友;神經(jīng)網(wǎng)絡(luò)的研究及應(yīng)用[D];東北農(nóng)業(yè)大學(xué);2007年
10 賀清碧;BP神經(jīng)網(wǎng)絡(luò)及應(yīng)用研究[D];重慶交通學(xué)院;2004年
,本文編號(hào):2261030
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/2261030.html