用于無運(yùn)動部件變焦的變曲率反射鏡技術(shù)研究
本文選題:無運(yùn)動部件變焦 + 變形鏡 ; 參考:《內(nèi)蒙古大學(xué)》2015年碩士論文
【摘要】:無運(yùn)動部件變焦(optical zoom without macroscopic moving elements)是指在沒有光學(xué)部件宏觀上相對位移的前提下實(shí)現(xiàn)光學(xué)變焦的過程。作為一種新型的光學(xué)變焦技術(shù),宏觀運(yùn)動部件的消除不但可以使其應(yīng)用到對空間、功耗或穩(wěn)定性有苛刻要求的場合,而且能夠提升變焦的時(shí)效性,因此極大地拓展了變焦技術(shù)的應(yīng)用范圍。目前,美國、德國、法國、中國等均已開展了將無運(yùn)動部件變焦應(yīng)用于天文望遠(yuǎn)鏡及移動電子設(shè)備變焦成像等領(lǐng)域的研究。能夠改變自身曲率半徑的主動光學(xué)元件——變曲率反射鏡是實(shí)現(xiàn)無運(yùn)動部件變焦的關(guān)鍵。在特定的場合,比如小規(guī)模驗(yàn)證系統(tǒng)中,商用變形鏡可以作為變曲率反射鏡的替代來使用。然而,為了回避多點(diǎn)驅(qū)動變形鏡控制復(fù)雜的問題,機(jī)理簡單易于實(shí)現(xiàn)的功能經(jīng)過簡化的變曲率反射鏡成為了一個(gè)研究分支。本文圍繞變曲率反射鏡技術(shù)開展研究工作,主要由以下幾個(gè)部分組成:第一,系統(tǒng)地介紹了無運(yùn)動部件變焦技術(shù)及關(guān)鍵器件——變曲率反射鏡技術(shù)的國內(nèi)外研究現(xiàn)狀及發(fā)展趨勢,并據(jù)此得出變曲率反射鏡技術(shù)應(yīng)用于無運(yùn)動部件變焦成像領(lǐng)域時(shí)面臨的難點(diǎn)。第二,從彈性薄板Roark應(yīng)力應(yīng)變定律出發(fā),首先介紹了基于簡支條件下的環(huán)形線負(fù)載機(jī)理的變曲率反射鏡的曲率變化物理模型。其次,對單驅(qū)動點(diǎn)環(huán)形線負(fù)載驅(qū)動及多驅(qū)動點(diǎn)疊加環(huán)形線負(fù)載驅(qū)動這樣兩種能夠?qū)崿F(xiàn)環(huán)形線負(fù)載驅(qū)動機(jī)理的物理方式進(jìn)行了性能上的對比分析,并以“最小驅(qū)動力實(shí)現(xiàn)最大中心形變”作為評價(jià)標(biāo)準(zhǔn),通過分析確定了驅(qū)動環(huán)半徑的最佳數(shù)值,同時(shí)分析了多驅(qū)動點(diǎn)疊加環(huán)形線負(fù)載驅(qū)動對于形變后的面形精度的調(diào)整控制能力。最后,通過比較不同基底材料、不同厚度對中心形變的影響及對驅(qū)動能力的要求,確定了變曲率反射鏡原型樣片的關(guān)鍵參數(shù)集合。第三,以優(yōu)化后的多驅(qū)動點(diǎn)疊加環(huán)形線負(fù)載驅(qū)動實(shí)現(xiàn)反射鏡曲率變化的物理模型出發(fā),在考慮后續(xù)器件裝配要求的前提下,對變曲率反射鏡的整體結(jié)構(gòu)形式進(jìn)行了設(shè)計(jì),并將其導(dǎo)入有限元軟件中進(jìn)行接近實(shí)際工況的有限元分析。分析表明,本文所建立的模型不但能夠?qū)崿F(xiàn)與曲率變化所對應(yīng)的較大的中心形變,而且能夠保證反射鏡及其結(jié)構(gòu)的使用安全。第四,介紹了變曲率反射鏡原型鏡片的加工、結(jié)構(gòu)件的研制、驅(qū)動器的選擇測試、實(shí)驗(yàn)平臺的搭建以及最后的整體試驗(yàn)測試的詳細(xì)描述,并對試驗(yàn)數(shù)據(jù)進(jìn)行了分析,找出了實(shí)驗(yàn)過程中結(jié)構(gòu)設(shè)計(jì)存在的問題,據(jù)此對變曲率反射鏡的結(jié)構(gòu)進(jìn)行了改進(jìn)。測試結(jié)果表明:100mmm口徑,3mmm厚的鈹青銅變曲率反射鏡可以實(shí)現(xiàn)超過30個(gè)波長(波長632.8nm)的中心形變。此外,同等規(guī)格的K9玻璃變曲率反射鏡能夠?qū)崿F(xiàn)的中心形變更大。
[Abstract]:Optical zoom without macroscopic moving elements) is the process of realizing optical zoom without the relative displacement of the optical component macroscopically. As a new type of optical zoom technology, the elimination of macroscopic moving parts can not only make it apply to the situation of demanding space, power consumption or stability, but also improve the timeliness of zoom. Therefore, the application of zoom technology is greatly expanded. At present, the United States, Germany, France, China and so on have carried out the research on the application of non-moving parts zoom in the field of telescope and mobile electronic device zoom imaging. Variable curvature reflector, an active optical element that can change its radius of curvature, is the key to realize zoom of moving parts. Commercial deformable mirrors can be used as an alternative to variable-curvature mirrors in specific situations, such as small scale verification systems. However, in order to avoid the complex problem of multi-point drive deformable mirror control, the simple and easy realization of the function of variable curvature mirror has become a branch of research. This paper focuses on the research of variable curvature mirror technology, which is mainly composed of the following parts: first, This paper systematically introduces the research status and development trend of zoom technology of moving parts and variable curvature reflector technology, which is the key device. Based on this, the difficulties in the application of variable curvature mirror technology in the field of zoom imaging without moving parts are obtained. Secondly, based on the Roark's stress-strain law of elastic thin plates, the physical model of curvature variation of variable curvature reflector based on simply supported toroidal load mechanism is first introduced. Secondly, the performance of single driving point ring line load drive and multi driving point superposition ring line load drive are compared and analyzed, which can realize the mechanism of ring line load drive. The optimum value of the radius of the driving ring is determined by using the "minimum driving force to realize the maximum central deformation" as the evaluation criterion. At the same time, the adjusting control ability of multi-point superposition ring line load drive on the deformation surface precision is analyzed. Finally, by comparing the effect of different substrate materials and thickness on the center deformation and the requirement of driving ability, the key parameter sets of the prototype sample of variable-curvature mirror are determined. Thirdly, based on the physical model of the curvature change of mirror realized by the optimized multi-drive point superposition ring line load drive, the integral structure of variable-curvature mirror is designed under the premise of considering the assembly requirements of subsequent devices. And it is introduced into the finite element software to carry on the finite element analysis which is close to the actual working condition. The analysis shows that the proposed model can not only realize the larger central deformation corresponding to the curvature change, but also ensure the safety of the mirror and its structure. Fourthly, the manufacture of the prototype lens of variable curvature mirror, the development of the structure, the choice and test of the driver, the construction of the experimental platform and the detailed description of the final whole test are introduced, and the test data are analyzed. The problems existing in the structural design during the experiment are found out, and the structure of the variable curvature mirror is improved accordingly. The results show that the Beryllium bronze reflector with 3mmm diameter of 100 mm diameter of beryllium bronze can achieve the center deformation of more than 30 wavelengths (632.8 nm). In addition, the K 9 glass mirror with the same size can achieve greater central deformation.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH74
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 原園;崔亞輝;呂國志;;變曲率連續(xù)滾滑接觸安定性的數(shù)值方法研究[J];計(jì)算力學(xué)學(xué)報(bào);2008年06期
2 王銀輝;陳山林;;考慮初曲率影響的變曲率箱梁空間有限元分析[J];中國公路學(xué)報(bào);2007年06期
3 王通;李鴻晶;孫晟;;考慮剪切和翹曲的變曲率曲梁變形微分方程[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
4 邱波;非線性的變曲率薄壁曲梁單元[J];廣西交通科技;1998年04期
5 倪國榮,王勇,熊國祥;變截面變曲率梁的工程解答[J];長沙鐵道學(xué)院學(xué)報(bào);1991年04期
6 趙惠;樊學(xué)武;馬臻;龐志海;任國瑞;柴文義;杜云飛;蘇宇;魏靜萱;;用于無運(yùn)動部件變焦的球面變曲率鏡設(shè)計(jì)及試驗(yàn)[J];航天返回與遙感;2014年03期
7 王銀輝;陳山林;錢立;;考慮形心和剪心分離的變曲率箱梁彎扭分析[J];重慶建筑大學(xué)學(xué)報(bào);2007年03期
8 劉家榮,徐永基;鋸齒形變曲率薄殼的內(nèi)力分析[J];土木工程學(xué)報(bào);1964年03期
9 李春遠(yuǎn);;彎晶的聚焦幾何與可變曲率聚焦的X射線譜儀[J];分析儀器;1983年01期
10 王洋;蔣其松;;兩段變曲率葉型離心泵設(shè)計(jì)研究[J];排灌機(jī)械工程學(xué)報(bào);2010年01期
相關(guān)碩士學(xué)位論文 前1條
1 解曉蓬;用于無運(yùn)動部件變焦的變曲率反射鏡技術(shù)研究[D];內(nèi)蒙古大學(xué);2015年
,本文編號:1967617
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/1967617.html