基于色散條紋傳感技術(shù)的拼接鏡共相方法研究
本文關(guān)鍵詞: 色散條紋傳感器 拼接鏡 共相檢測 平移誤差 主動光學(xué) 出處:《中國科學(xué)院長春光學(xué)精密機械與物理研究所》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:為追求更高的分辨率,空間成像光學(xué)系統(tǒng)的發(fā)展趨勢就是長焦距和大口徑。但是以現(xiàn)有的技術(shù)水平,單塊望遠鏡口徑的增大會給鏡面的加工檢測、望遠鏡支撐以及后續(xù)的使用維護帶來很大困難。拼接主鏡概念的提出,突破了傳統(tǒng)的全口徑光學(xué)系統(tǒng)設(shè)計理念,將完整的光學(xué)系統(tǒng)“化整為零”,在有效地減小望遠鏡的質(zhì)量和造價的同時,保證了系統(tǒng)成像質(zhì)量,為制造大口徑及超大口徑空間望遠鏡指出了一個新方向。但是,采用拼接式主鏡的望遠鏡系統(tǒng),也伴隨著許多新的技術(shù)問題,其中最具挑戰(zhàn)性的、也最為關(guān)鍵的,就是拼接子鏡之間的共相誤差探測。對于拼接型望遠鏡,為使望遠鏡系統(tǒng)達到或接近衍射極限的成像質(zhì)量,要求各個子鏡達到光學(xué)上的共焦共相。實際上,共焦易于實現(xiàn),難點在于共相。傳統(tǒng)的波前探測方法如剪切干涉法,夏克-哈特曼波前傳感法以及曲率傳感法等,由于自身結(jié)構(gòu)復(fù)雜并且對拼接鏡的平移誤差不敏感,很難用于拼接鏡系統(tǒng)的平移誤差檢測。相位差法雖然能以較高的精度對平移誤差進行探測,但其檢測范圍十分有限,所以很難用于較大平移誤差的探測。不同于這些常規(guī)的波前探測方法,色散條紋檢測技術(shù)通過從非單色光源照射相鄰子鏡拼接區(qū)域得到的明暗條紋中提取光強信息,實現(xiàn)拼接鏡平移誤差的非接觸式測量。具有操作方便、自動化程度高、體積小、成本低、量程大、抗干擾能力強等優(yōu)點,尤其適用于空間望遠鏡在軌檢測。本文對基于色散條紋傳感技術(shù)的拼接鏡共相方法展開了研究。根據(jù)色散條紋傳感技術(shù)的檢測原理,構(gòu)建了色散條紋傳感器的光學(xué)成像模型,并利用計算機對整個檢測流程進行了仿真研究。為解決色散條紋檢測技術(shù)對波長以內(nèi)平移誤差失效的問題,提出了兩種輔助檢測方法——色散哈特曼檢測法、色散模板匹配法,并通過仿真驗證了這兩種方法的可行性。結(jié)合這幾種方法,色散條紋傳感器在可見光范圍內(nèi)能準確檢測±60μm量程范圍內(nèi)的平移誤差,檢測精度可達l10,實現(xiàn)了粗共相和精共相的無縫銜接。同時,詳細定量分析了影響色散條紋傳感器性能的誤差因素:哈特曼子透鏡定位誤差、棱柵定位誤差、提取信號列位置誤差。通過模擬不同誤差下的色散條紋,分別采用色散條紋檢測法、色散哈特曼檢測法、色散模板匹配法對不同程度的誤差進行測試,根據(jù)測試結(jié)果確定這幾種檢測方法對系統(tǒng)誤差的容許程度和抵抗能力。特別地,對采集信號列相對中心列位置的偏移造成的檢測誤差,提出了多路采集和提高波長標定精度等相應(yīng)的解決方法,并且針對色散條紋檢測算法提出了新的改進方案,利用相位項解算平移誤差的擬合殘余量,降低其對微小標定誤差的敏感程度。最后,設(shè)計了色散條紋傳感器檢測系統(tǒng),搭建了光學(xué)實驗平臺,對色散條紋檢測法探測拼接鏡平移誤差進行了實驗驗證。實驗結(jié)果表明,該方法可以有效地完成對平移誤差的大量程、無盲區(qū)、高精度檢測,在空間和地基拼接型望遠鏡的粗共相標定和控制領(lǐng)域有廣闊的應(yīng)用前景。
[Abstract]:For the pursuit of higher resolution, the development trend of space optical imaging system is a long focal length and large diameter. But the current level of technology, increasing the single telescope aperture will give the telescope mirror detection processing, supporting and subsequent maintenance difficult. Then the main concept of the proposed spell mirror, breakthrough design concept the full aperture of the traditional optical system, the optical system is complete, to effectively reduce the break up the whole into parts "telescope quality and cost at the same time, to ensure the imaging quality of the system, points out a new direction for the manufacture of large diameter and super large aperture space telescope. However, the segmented mirror telescope system, also along with many new technical problems, one of the most challenging and most critical, is between the segmented mirrors the common phase error detection for splicing telescope, in order to make the telescope system The image quality to or close to the diffraction limit, for each sub mirror to the confocal optical universals. In fact, confocal and easy to implement, the difficulty lies in universals. The traditional wavefront detection methods such as shearing interferometry, shack Hartmann wavefront sensing method and curvature sensing method, because of its complex structure and is not sensitive to translation the error of segmented mirrors, is difficult for the translation error of segmented mirror system. The phase difference method can detect to the translation error in high precision, but its detection range is very limited, so it is difficult to detect large translation error. Different detection methods on these conventional wavefront, dispersed fringe detection technology by extraction the light intensity information is obtained from the non monochromatic light of adjacent sub mirror spliced region stripes, non-contact measurement to achieve translation error. The segmented mirror has the advantages of convenient operation, high degree of automation , small volume, low cost, large range, strong anti-jamming capability, especially suitable for the space telescope in orbit testing. This thesis researched on the segmented mirror dispersed fringe sensor technology based on universal method. According to the detection principle of dispersed fringe sensor technology, constructed the optical model of dispersed fringe sensor, and use the computer the simulation study on the whole detection process. In order to solve the dispersion fringe detection technique of wavelength within the translation error failure problems, puts forward two kinds of auxiliary detection methods - Hartmann dispersion method, dispersion template matching method, and the feasibility of these two methods is verified by simulation. Combining these methods, dispersed fringe sensor accuracy detection of translation error + 60 u m range in the visible range, the detection precision can reach L10, the total of fine coarse universals and seamless connection phase. At the same time. The quantitative analysis of the influence of the error of fine dispersed fringe sensor performance factors: the Hartmann lens positioning error, grism positioning error, position error signal extraction column. By simulating the dispersion pattern of different errors, using dispersed fringe detection method, Hartmann dispersion method, dispersion template matching method to test different degree error, determine the several detection methods of system error tolerance degree and resistance according to the test results. In particular, the relative detection error caused by the deviation of the center position of the signal acquisition, proposes a multi channel data acquisition and improve the accuracy of the corresponding wavelength calibration solution, and put forward a new improvement scheme for the dispersion fringe detection algorithm. Using the fitting residual phase solution translation error, reduces the sensitivity to small calibration error. Finally, the design of a dispersed fringe sensor The optical detection system, set up the experimental platform, on the detection of segmented mirror dispersion fringes translation errors in the experiments. The experimental results show that this method can effectively complete the large range of translation errors, without blind spots, high precision detection, rough calibration and control in the field of phase space and the foundation of splicing telescope the broad application prospect.
【學(xué)位授予單位】:中國科學(xué)院長春光學(xué)精密機械與物理研究所
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TH743
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 孟玉凰;徐抒巖;許博謙;;基于色散條紋傳感技術(shù)的拼接鏡共相方法[J];光學(xué)學(xué)報;2016年09期
2 袁立銀;何志平;舒嶸;王建宇;;短波紅外棱鏡-光柵-棱鏡成像光譜儀光學(xué)系統(tǒng)設(shè)計[J];光子學(xué)報;2011年06期
3 張勇;張靚;劉根榮;王躍飛;張亞俊;曾裔中;李燁平;;基于色散條紋傳感器的拼接鏡面共相的實驗研究[J];光學(xué)學(xué)報;2011年02期
4 王姍姍;朱秋東;曹根瑞;;空間拼接主鏡望遠鏡共相位檢測方法[J];光學(xué)學(xué)報;2009年09期
5 王欣;趙達尊;;圖像噪聲對相位變更波前傳感的影響研究[J];光學(xué)學(xué)報;2009年08期
6 朱能鴻;陳欣揚;周丹;曹建軍;;利用四棱錐傳感器檢測光學(xué)拼接鏡的法向光程差[J];傳感技術(shù)學(xué)報;2009年03期
7 邵亮;楊德華;陳昆新;楊斌堂;;光學(xué)天文望遠鏡用微位移驅(qū)動器機構(gòu)研究綜述[J];天文學(xué)進展;2009年01期
8 董冰;俞信;;高分辨率空間望遠鏡分塊主鏡位置誤差的在軌校正[J];光學(xué)學(xué)報;2009年01期
9 張曉芳;董冰;黃一帆;毛珩;王姍姍;俞信;;分塊式空間望遠鏡波前傳感及控制方法的仿真研究[J];光學(xué)學(xué)報;2009年01期
10 蘇定強;;望遠鏡和天文學(xué):400年的回顧與展望[J];物理;2008年12期
,本文編號:1461591
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/1461591.html