差動式邁克爾遜干涉納米位移測量方法研究
發(fā)布時間:2018-01-04 10:12
本文關鍵詞:差動式邁克爾遜干涉納米位移測量方法研究 出處:《浙江理工大學》2015年碩士論文 論文類型:學位論文
更多相關文章: 納米位移測量 激光干涉儀 差動式 邁克爾遜干涉儀 相位差測量
【摘要】:隨著精密加工、微電子等行業(yè)的快速發(fā)展,,對高精度位移測量技術的需求越來越大,性能要求也越來越高。本文依托國家自然科學基金(NO.51205365),設計了一種差動式邁克爾遜干涉納米位移測量方法,并對測量方法的各項關鍵技術進行了研究,通過搭建完整的測量系統(tǒng),最終實現(xiàn)納米級精度的位移測量。 論文介紹了國內外納米位移測量技術的研究現(xiàn)狀,提出了一種差動式邁克爾遜干涉納米位移測量方法,對差動式邁克爾遜干涉納米位移測量的原理進行了詳細的介紹,對測量系統(tǒng)的光路結構進行了設計,對系統(tǒng)機械支撐結構進行設計與有限元受力分析;設計了信號預處理電路與電壓轉化電路,用于改善干涉信號質量以及調整信號電壓范圍;設計了高精度的干涉信號相位差測量方法,并對相位差測量精度與分辨率進行了實驗驗證;設計了相位差測量速度補償方法,對相位差測量過程中速度變化引起的誤差進行了分析與補償;對大數(shù)計數(shù)的測量原理進行了介紹,并對參考鏡移動方向判斷方法進行了設計;運用C語言對DSP進行了軟件設計,運用VB設計了上位機的系統(tǒng)控制軟件。 為驗證本文所構建的差動式邁克爾遜干涉納米位移測量系統(tǒng)的可行性與有效性,搭建了實驗平臺,分別進行了以下實驗:(1)相位差測量補償對比實驗,分別以50nm、200nm為步長進行了對比位移測量實驗,步長為50nm時,補償后測量誤差的標準偏差由1.0108nm減小為0.5686nm,誤差平均偏差由0.7648nm減小為0.4616nm;步長為200nm時,補償后測量誤差標準偏差由1.4188nm減小為0.5687nm,誤差平均偏差由1.1115nm減小為0.4838nm。(2)小數(shù)計數(shù)位移測量實驗,分別進行了5nm、10nm、20nm、50nm步長的位移測量實驗,測量誤差的標準偏差分別為0.4697nm、0.6317nm、0.7594nm、0.6644nm。(3)大數(shù)計數(shù)位移測量時實驗,分別在正反向下進行了驗證實驗,以0.5μm為步長,在0-7μm的范圍內驗證大數(shù)計數(shù)的準確性,結果為大數(shù)計數(shù)誤差均小于半個波長,與干涉條紋位移測量理論相符,大數(shù)計數(shù)正確。(4)大小數(shù)結合位移測量實驗,分別在1μm與7μm下進行了重復性位移測量實驗,測量的誤差標準偏差分別為1.3199nm與0.9184nm,平均偏差分別為1.1057nm與0.9179nm。上述實驗表明本文測量方法能夠實現(xiàn)納米精度位移測量,并且具有良好的可靠性與穩(wěn)定性。
[Abstract]:With the rapid development of precision machining, microelectronics and other industries, the demand for high-precision displacement measurement technology is increasing. The performance requirements are becoming higher and higher. A differential Michelson interferometric nano-displacement measurement method is designed based on the National Natural Science Foundation of China (NSFC) no. 51205365. The key technologies of the measurement method are studied, and the displacement measurement with nanometer precision is finally realized by building a complete measuring system. This paper introduces the research status of nano-displacement measurement technology at home and abroad, and proposes a differential Michelson interferometric nano-displacement measurement method. The principle of differential Michelson interferometric nano-displacement measurement is introduced in detail. The optical structure of the measurement system is designed, and the mechanical support structure of the system is designed and analyzed by finite element method. The signal preprocessing circuit and the voltage conversion circuit are designed to improve the interference signal quality and adjust the voltage range of the signal. The phase difference measurement method of high precision interference signal is designed, and the precision and resolution of phase difference measurement are verified by experiment. The velocity compensation method of phase difference measurement is designed, and the error caused by velocity change in phase difference measurement is analyzed and compensated. The measuring principle of large number counting is introduced, and the method of determining the moving direction of reference mirror is designed. C language is used to design the software of DSP and VB is used to design the system control software of upper computer. In order to verify the feasibility and effectiveness of the differential Michelson interferometric nanoscale displacement measurement system, an experimental platform was set up, and the following experiments were carried out respectively. The displacement measurement experiments were carried out with the step size of 50nm ~ 200nm respectively. When the step size is 50nm, the standard deviation of measurement error after compensation is reduced from 1.0108nm to 0.5686nm. The average error deviation was reduced from 0.7648 nm to 0.4616 nm. When the step size is 200nm, the standard deviation of measurement error is reduced from 1.4188nm to 0.5687nm. The average error deviation was reduced from 1.1115nm to 0.4838nm.m-2). The standard deviation of measurement error is 0.4697 nm ~ 0.6317 nm ~ (-1) ~ 0.7594nm, respectively. When measuring the displacement of large number count, the experiments were carried out in both positive and negative direction. The accuracy of large number counting was verified in the range of 0-7 渭 m with 0.5 渭 m as step. The results show that the error of large number counting is less than half wavelength, which is consistent with the theory of interference fringes displacement measurement, and the large number count is correct. The repeatable displacement measurement experiments were carried out at 1 渭 m and 7 渭 m, respectively. The error standard deviations were 1.3199 nm and 0.9184 nm, respectively. The average deviations are 1.1057nm and 0.9179nmrespectively. The experimental results show that the proposed method can realize the displacement measurement with nanometer precision and has good reliability and stability.
【學位授予單位】:浙江理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TH744.3;TP274
【參考文獻】
相關期刊論文 前10條
1 郭金運,胡建國,靳奉祥;空氣折射率及其對EDM測距的影響[J];測繪通報;2001年01期
2 楚興春;呂海寶;趙尚弘;;大量程納米級光柵干涉位移測量[J];光電工程;2008年01期
3 陳洪芳;鐘志;丁雪梅;;激光外差干涉的非線性誤差補償[J];光學精密工程;2010年05期
4 王林,曹芒,李達成;用于納米測量的掃描X射線干涉技術[J];光學精密工程;1998年01期
5 穆瑞珍;楊萬福;陳本永;;干涉條紋大數(shù)計數(shù)軟件新方法及其實現(xiàn)[J];光學技術;2008年05期
6 程曉輝,趙洋,李達成;光學納米測量方法及發(fā)展趨勢[J];光學技術;1999年03期
7 李立艷;吳冰;苑勇貴;魏勇;楊軍;苑立波;;單頻激光干涉儀非線性誤差補償方法研究[J];光學學報;2011年07期
8 湯善治;王昭;蔣志雄;郭俊杰;;皮米級分辨率測量及細分技術進程[J];光子學報;2010年S1期
9 胡紅波;于梅;;零差激光干涉儀正交相位誤差的分析[J];光電工程;2012年12期
10 齊磊;曹劍英;;掃描隧道顯微鏡簡介[J];赤峰學院學報(自然科學版);2013年03期
本文編號:1378077
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/1378077.html