基于張量和非線性稀疏的多維信號壓縮感知理論與應(yīng)用
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.7
【相似文獻】
相關(guān)期刊論文 前10條
1 諶德榮;宮久路;陳乾;曹旭平;;基于樣本分割的快速高光譜圖像異常檢測支持向量數(shù)據(jù)描述方法[J];兵工學(xué)報;2008年09期
2 王雷;喬曉艷;董有爾;張姝;尚艷飛;;高光譜圖像技術(shù)在農(nóng)產(chǎn)品檢測中的應(yīng)用進展[J];應(yīng)用光學(xué);2009年04期
3 蒲曉豐;雷武虎;張林虎;蔣奇材;;基于Fukunaga-Koontz變換的高光譜圖像異常檢測[J];紅外技術(shù);2010年04期
4 成寶芝;郭宗光;;高光譜圖像波段間相關(guān)特性研究[J];大慶師范學(xué)院學(xué)報;2013年06期
5 王慶國;黃敏;朱啟兵;孫群;;基于高光譜圖像的玉米種子產(chǎn)地與年份鑒別[J];食品與生物技術(shù)學(xué)報;2014年02期
6 楊龍;易宏杰;李因彥;;遙感高光譜圖像赤潮識別[J];傳感器世界;2007年05期
7 汪倩;陶鵬;;結(jié)合空間信息的高光譜圖像快速分類方法[J];微計算機信息;2010年21期
8 王立國;孫杰;肖倩;;結(jié)合空-譜信息的高光譜圖像分類方法[J];黑龍江大學(xué)自然科學(xué)學(xué)報;2010年06期
9 馮朝麗;朱啟兵;朱曉;黃敏;;基于光譜特征的玉米品種高光譜圖像識別[J];江南大學(xué)學(xué)報(自然科學(xué)版);2012年02期
10 徐爽;何建國;馬瑜;梁慧琳;劉貴珊;賀曉光;;高光譜圖像技術(shù)在水果品質(zhì)檢測中的研究進展[J];食品研究與開發(fā);2013年10期
相關(guān)會議論文 前10條
1 張兵;王向偉;鄭蘭芬;童慶禧;;高光譜圖像地物分類與識別研究[A];成像光譜技術(shù)與應(yīng)用研討會論文集[C];2004年
2 高連如;張兵;孫旭;李山山;張文娟;;高光譜數(shù)據(jù)降維與分類技術(shù)研究[A];第八屆成像光譜技術(shù)與應(yīng)用研討會暨交叉學(xué)科論壇文集[C];2010年
3 王成;何偉基;陳錢;;基于波段重組和小波變換的高光譜圖像嵌入式壓縮方法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會論文(摘要)集[C];2013年
4 孫蕾;羅建書;;基于分類預(yù)測的高光譜遙感圖像無損壓縮[A];第一屆建立和諧人機環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2005)論文集[C];2005年
5 楊勇;劉木華;鄒小蓮;苗蓬勃;趙珍珍;;基于高光譜圖像技術(shù)的獼猴桃硬度品質(zhì)檢測[A];走中國特色農(nóng)業(yè)機械化道路——中國農(nóng)業(yè)機械學(xué)會2008年學(xué)術(shù)年會論文集(下冊)[C];2008年
6 張曉紅;張立福;王晉年;童慶禧;;HJ-1A衛(wèi)星高光譜遙感圖像質(zhì)量綜合評價[A];第八屆成像光譜技術(shù)與應(yīng)用研討會暨交叉學(xué)科論壇文集[C];2010年
7 高東生;高連知;;基于獨立分量分析的高光譜圖像目標盲探測方法研究[A];國家安全地球物理叢書(八)——遙感地球物理與國家安全[C];2012年
8 馮維一;陳錢;何偉基;;基于小波稀疏的高光譜目標探測算法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會論文(摘要)集[C];2013年
9 彭妮娜;易維寧;方勇華;;基于核函數(shù)的高光譜圖像信息提取研究[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年
10 蒲曉豐;雷武虎;黃濤;王迪;;基于穩(wěn)健背景子空間的高光譜圖像異常檢測[A];中國光學(xué)學(xué)會2010年光學(xué)大會論文集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 普晗曄;高光譜遙感圖像的解混理論和方法研究[D];復(fù)旦大學(xué);2014年
2 王亮亮;非線性流形結(jié)構(gòu)在高光譜圖像異常檢測中的應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2014年
3 賀智;改進的經(jīng)驗?zāi)B(tài)分解算法及其在高光譜圖像分類中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2014年
4 魏然;基于成像機理分析的高光譜圖像信息恢復(fù)研究[D];哈爾濱工業(yè)大學(xué);2015年
5 葉珍;高光譜圖像特征提取與分類算法研究[D];西北工業(yè)大學(xué);2015年
6 馮婕;基于軟計算和互信息理論的遙感圖像地物分類[D];西安電子科技大學(xué);2014年
7 孫濤;快速多核學(xué)習(xí)分類研究及應(yīng)用[D];西安電子科技大學(xué);2015年
8 賀霖;高光譜圖像自動目標檢測技術(shù)研究[D];西北工業(yè)大學(xué);2007年
9 周爽;蟻群算法在高光譜圖像降維和分類中的應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2010年
10 陳雨時;基于光譜特性的高光譜圖像壓縮方法研究[D];哈爾濱工業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 豐爍;高光譜圖像波段選取問題的改進算法研究[D];昆明理工大學(xué);2015年
2 趙偉彥;果蔬干燥過程中的品質(zhì)無損檢測技術(shù)研究[D];江南大學(xué);2015年
3 馬亞楠;果蔬中內(nèi)部害蟲的高光譜圖像檢測技術(shù)研究[D];江南大學(xué);2015年
4 劉大洋;基于近紅外光譜和高光譜圖像技術(shù)無損識別獼猴桃膨大果[D];西北農(nóng)林科技大學(xué);2015年
5 王坤;高光譜圖像異常目標檢測及光譜成像在偽裝評估方面的應(yīng)用研究[D];南京理工大學(xué);2015年
6 王啟聰;高光譜圖像分類的GPU并行優(yōu)化研究[D];南京理工大學(xué);2015年
7 程凱;無先驗信息的高光譜圖像小目標檢測算法研究[D];蘇州大學(xué);2015年
8 李秩期;基于高光譜及多信息融合的馬鈴薯外部缺陷無損檢測研究[D];寧夏大學(xué);2015年
9 王健;基于高光譜圖像的馬鈴薯形狀及重量分類識別建模研究[D];寧夏大學(xué);2015年
10 吳蓓芬;偏振高光譜圖像場景仿真及分類方法研究[D];哈爾濱工業(yè)大學(xué);2015年
,本文編號:2562562
本文鏈接:http://sikaile.net/kejilunwen/wltx/2562562.html