利用信源先驗(yàn)特征的混合測向算法
發(fā)布時間:2019-06-08 19:14
【摘要】:基于特征分解的子空間類測向算法均要知道信源個數(shù),但在小快拍數(shù)、低信噪比,且信源間的信號強(qiáng)度差異明顯的場合中,傳統(tǒng)的AIC信息準(zhǔn)則和MDL準(zhǔn)則均不能準(zhǔn)確判斷信源個數(shù)。這直接惡化了基于特征分解類算法(如MUSIC法)的測向性能。針對該問題,提出了一種利用信源先驗(yàn)特征的混合測向算法。該算法既利用了信源在角度上呈稀疏分布的信息提高了信源數(shù)判決的準(zhǔn)確性,也利用了信源的非圓特性改進(jìn)了測向性能。計算機(jī)仿真證實(shí)了該方法的正確性。
[Abstract]:The subspace class direction finding algorithm based on feature decomposition should know the number of sources, but in the case of small fast beat number, low signal-to-noise ratio and obvious signal strength difference between the sources, The traditional AIC information criterion and MDL criterion can not accurately judge the number of sources. This directly degrades the direction finding performance based on feature decomposition class algorithms, such as MUSIC method. In order to solve this problem, a hybrid direction finding algorithm based on the prior characteristics of sources is proposed. The algorithm not only makes use of the information that the source is sparse in angle to improve the accuracy of the number of sources, but also makes use of the non-circular characteristics of the source to improve the direction finding performance. The correctness of the method is verified by computer simulation.
【作者單位】: 電子科技大學(xué)電子工程學(xué)院;同方電子科技有限公司;
【基金】:國家自然科學(xué)基金(61172140)
【分類號】:TN911.7
[Abstract]:The subspace class direction finding algorithm based on feature decomposition should know the number of sources, but in the case of small fast beat number, low signal-to-noise ratio and obvious signal strength difference between the sources, The traditional AIC information criterion and MDL criterion can not accurately judge the number of sources. This directly degrades the direction finding performance based on feature decomposition class algorithms, such as MUSIC method. In order to solve this problem, a hybrid direction finding algorithm based on the prior characteristics of sources is proposed. The algorithm not only makes use of the information that the source is sparse in angle to improve the accuracy of the number of sources, but also makes use of the non-circular characteristics of the source to improve the direction finding performance. The correctness of the method is verified by computer simulation.
【作者單位】: 電子科技大學(xué)電子工程學(xué)院;同方電子科技有限公司;
【基金】:國家自然科學(xué)基金(61172140)
【分類號】:TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 李京華;許家棟;李紅娟;;戰(zhàn)場多目標(biāo)混合聲信號源數(shù)盲估計算法研究[J];兵工學(xué)報;2008年05期
2 謝菊蘭;李會勇;何子述;;均勻圓陣相干信源DOA估計的差分算法[J];電子科技大學(xué)學(xué)報;2012年04期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王登偉;呂英華;張博;劉兵;;基于光纖無線電的優(yōu)化自適應(yīng)波束形成算法[J];半導(dǎo)體光電;2007年05期
2 趙紅;劉橋;;一種低旁瓣的子陣級數(shù)字波束形成方法[J];兵工自動化;2009年11期
3 楊小明;陶然;;基于分?jǐn)?shù)階Fourier變換和ESPRIT算法的LFM信號2D波達(dá)方向估計[J];兵工學(xué)報;2007年12期
4 梁國龍;張鍇;付進(jìn);張瑤;李利;;單矢量水聽器的高分辨方位估計應(yīng)用研究[J];兵工學(xué)報;2011年08期
5 盧海杰;章新華;熊鑫;;流形分離在非均勻圓陣上的應(yīng)用[J];兵工學(xué)報;2011年09期
6 譚淵;楊勇;袁乃昌;;超分辨譜估計法在測速雷達(dá)中的應(yīng)用[J];兵工學(xué)報;2011年11期
7 卞紅雨;王s,
本文編號:2495509
本文鏈接:http://sikaile.net/kejilunwen/wltx/2495509.html
最近更新
教材專著