基于模糊熵和ABC算法的SAR圖像分割的研究
[Abstract]:With the rapid development of synthetic Aperture Radar (Synthetic Aperture Radar, SAR) technology, SAR images in satellite remote sensing, military investigation, Marine monitoring and agroforestry monitoring play a very important role. SAR image segmentation is to extract the part of the target needed in the image to facilitate the more accurate study of the image. Because of its unique imaging characteristics, SAR images will have speckle noise, so it has a great difference from ordinary optical images, so it is also different in segmented images. In this paper, a variety of image segmentation methods at home and abroad in recent years are reviewed, among which threshold segmentation is the most widely used in image segmentation. Some intelligent optimization algorithms for image segmentation have a good optimization effect on image segmentation. Aiming at the problems existing in SAR image segmentation, this paper studies the SAR image segmentation based on maximum fuzzy entropy and improved beehive threshold segmentation algorithm. The main work and achievements are as follows: firstly, In view of the disadvantages of one-dimensional fuzzy entropy algorithm, which only considers the gray-scale characteristics of pixels but not the spatial gray-scale characteristics of the neighborhood, a two-dimensional histogram-based fuzzy entropy algorithm (called two-dimensional fuzzy entropy) is introduced. The two-dimensional histogram of gray-neighborhood average gray level is obtained, and the two-dimensional histogram is divided into target region and background region. The fuzzy entropy is calculated, the maximum threshold is calculated, and the obtained threshold is used to segment the image. The proposed algorithm provides a basis for the follow-up work. Then, in view of the weak anti-noise ability of the two-dimensional fuzzy entropy algorithm, this paper improves the two-dimensional fuzzy entropy algorithm, and improves the two-dimensional histogram into the two-dimensional histogram of grayscale-grayscale gradient. The two-dimensional fuzzy entropy algorithm is more robust to noise. Finally, because of the slow speed of the two-dimensional fuzzy entropy algorithm, the artificial bee colony algorithm is introduced in this paper. The two-dimensional fuzzy entropy is used as the fitness function of the artificial bee colony algorithm, and the optimal threshold is obtained to segment the image. In order to avoid premature convergence of artificial bee colony algorithm, this paper improves artificial bee colony algorithm and proposes an algorithm based on fuzzy entropy and artificial bee colony. The algorithm improves the way of honey source search and the calculation of transfer probability, and greatly accelerates the speed of the algorithm. At the beginning of image segmentation, the image is preprocessed by gray-scale morphology, then the image is segmented by this algorithm to improve the anti-noise property. Finally, the simulation results show that the proposed algorithm is effective and anti-noise, and that the proposed algorithm can improve the speed of the algorithm.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐偉力;龍建忠;;一種基于降雨模型的圖像分割方法在礫巖圖像分割中的應(yīng)用[J];成都信息工程學(xué)院學(xué)報(bào);2007年02期
2 黃曉莉;曾黃麟;王秀碧;劉永春;;基于脈沖耦合神經(jīng)網(wǎng)絡(luò)的圖像分割[J];信息技術(shù);2008年09期
3 肖飛;綦星光;;圖像分割方法綜述[J];可編程控制器與工廠自動(dòng)化;2009年11期
4 汪一休;;一種交互式圖像分割的修正優(yōu)化方法[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2010年02期
5 李丹;;圖像分割方法及其應(yīng)用研究[J];科技信息;2010年36期
6 龔永義;黃輝;于繼明;關(guān)履泰;;基于熵的兩區(qū)域圖像分割[J];中國(guó)圖象圖形學(xué)報(bào);2011年05期
7 張甫;李興來(lái);陳佳君;;淺談圖像分割方法的研究運(yùn)用[J];科技創(chuàng)新與應(yīng)用;2012年04期
8 汪梅;何高明;賀杰;;常見(jiàn)圖像分割的技術(shù)分析與比較[J];計(jì)算機(jī)光盤(pán)軟件與應(yīng)用;2013年06期
9 魏慶;盧照敢;邵超;;基于復(fù)雜性指數(shù)的圖像分割必要性判別技術(shù)[J];計(jì)算機(jī)工程與應(yīng)用;2013年16期
10 陳曉丹;李思明;;圖像分割研究進(jìn)展[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2013年33期
相關(guān)會(huì)議論文 前10條
1 楊魁;趙志剛;;圖像分割技術(shù)綜述[A];2008年中國(guó)高校通信類院系學(xué)術(shù)研討會(huì)論文集(下冊(cè))[C];2009年
2 楊暄;郭成安;李建華;;改進(jìn)的脈沖耦合神經(jīng)網(wǎng)絡(luò)及其在圖像分割中的應(yīng)用[A];第十屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2001)論文集[C];2001年
3 楊生友;;圖像分割在醫(yī)學(xué)圖像中應(yīng)用現(xiàn)狀綜述[A];2009中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十七次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2009年
4 閆平昆;;基于模型的圖像分割技術(shù)及其醫(yī)學(xué)應(yīng)用[A];第十五屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
5 高嵐;胡友為;潘峰;盧凌;;基于小生境遺傳算法的SAR圖像分割[A];可持續(xù)發(fā)展的中國(guó)交通——2005全國(guó)博士生學(xué)術(shù)論壇(交通運(yùn)輸工程學(xué)科)論文集(下冊(cè))[C];2005年
6 孫莉;張艷寧;胡伏原;趙榮椿;;基于Gaussian-Hermite矩的SAR圖像分割[A];第十三屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
7 李盛;;基于協(xié)同聚類的圖像分割[A];第十四屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
8 張利;許家佗;;舌象圖像分割技術(shù)的研究與應(yīng)用進(jìn)展[A];中華中醫(yī)藥學(xué)會(huì)中醫(yī)診斷學(xué)分會(huì)第十次學(xué)術(shù)研討會(huì)論文集[C];2009年
9 秦昆;李振宇;李輝;李德毅;;基于云模型和格網(wǎng)劃分的圖像分割方法[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
10 高惠琳;竇麗華;陳文頡;謝剛;;圖像分割技術(shù)在醫(yī)學(xué)CT中的應(yīng)用[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)A卷[C];2011年
相關(guān)博士學(xué)位論文 前10條
1 白雪飛;基于視覺(jué)顯著性的圖像分割方法研究[D];山西大學(xué);2014年
2 黃萬(wàn)里;基于高分衛(wèi)星數(shù)據(jù)多尺度圖像分割方法的天山森林小班邊界提取研究[D];福建師范大學(xué);2015年
3 王輝;圖像分割的最優(yōu)化和水平集方法研究[D];電子科技大學(xué);2014年
4 高婧婧;腦部MR圖像分割理論研究[D];電子科技大學(xué);2014年
5 潘改;偏微分方程在圖像分割中的應(yīng)用研究[D];東北大學(xué);2013年
6 馮籍瀾;高分辨率SAR圖像分割與分類方法研究[D];電子科技大學(xué);2015年
7 李偉斌;圖像分割中的變分模型與快速算法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
8 鄧曉政;基于免疫克隆選擇優(yōu)化和譜聚類的復(fù)雜圖像分割[D];西安電子科技大學(xué);2014年
9 帥永e,
本文編號(hào):2459561
本文鏈接:http://sikaile.net/kejilunwen/wltx/2459561.html