基于MEMS傳感器的高精度行人導(dǎo)航算法研究
[Abstract]:With the rapid development of microelectronics technology, the application field of navigation technology has gradually changed from militarization to commercialization. In recent years, indoor navigation technology has been greatly developed by more and more enterprises and people. However, most of the existing indoor positioning systems are based on infrastructure, and their shortcomings are very obvious: a large number of external devices need to be installed in advance in the environment where navigation and positioning is needed, the cost of investment is very high, and the precision still needs to be improved. This paper proposes to design a pedestrian navigation system based on its own sensor to solve the above shortcomings. Strapdown inertial navigation technology can not only avoid the need for peripherals, put in high defects, and in a short time positioning accuracy is quite high, but with the passage of time, it has accumulated drift error. In view of this, this paper designs an effective algorithm to compensate cumulative error based on Kalman filter. Firstly, the inertial measurement information is solved by the strapdown inertial calculation module, the attitude information is obtained by the angular velocity integral, the acceleration is transformed by the quaternion method, and the velocity information is obtained by the integration. Secondly, the position information can be solved by quadratic integration. Then, the zero-speed detection module is used to detect the "zero-speed" phase of pedestrian walking through three-condition judgment method, and the Kalman filter module is triggered when the "zero-speed" is detected. Finally, the velocity vector calculated by strapdown inertia is used as the measurement value, and Kalman filter is used to estimate the state error of the system. By solving the covariance of velocity estimation, the state error estimation is segmented. Further adjust the state error estimation and its covariance matrix with backward fixed interval smoothing technology, and forward feedback corrects pedestrian position, velocity and attitude information. At the same time, the Kalman filter state model is extended, the zero bias error information of accelerometer and gyroscope is added, and the inertial measurement information is corrected by feedback to further eliminate the drift error of the system. Finally, the pedestrian positioning and navigation in indoor environment is realized. Based on the error compensation algorithm mentioned above, a pedestrian navigation system is designed in this paper. It is verified by many experiments that the pedestrian navigation system converges to a stable state and the positioning precision is kept within 1m within 500m distance. The high precision positioning target is achieved. The pedestrian navigation system designed in this paper provides a simple and effective method for indoor positioning based on its own sensor, which can be further integrated and applied to smart home, fire rescue, supermarket shopping, Garage parking and many other scenes.
【學(xué)位授予單位】:廈門大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN966
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃軍輝;陳述官;廖中文;王海林;;MEMS傳感器在汽車電子上的應(yīng)用研究與展望[J];拖拉機(jī)與農(nóng)用運(yùn)輸車;2011年02期
2 余海錢;廖海洋;王涵;;基于MEMS技術(shù)和無線射頻網(wǎng)絡(luò)的人體健康參數(shù)采集系統(tǒng)[J];傳感技術(shù)學(xué)報(bào);2006年05期
3 蘇小波;柴旭朝;戴歡;顧曉峰;于宗光;;用于MEMS傳感器的三階Σ-Δ調(diào)制器設(shè)計(jì)[J];微電子學(xué);2010年05期
4 杜大程;劉莉;;小型無人機(jī)自動(dòng)駕駛儀設(shè)計(jì)與實(shí)現(xiàn)[J];計(jì)算機(jī)測(cè)量與控制;2010年11期
5 王偉忠;趙玉龍;林啟敬;;MEMS三維微力探針傳感器設(shè)計(jì)及性能測(cè)試[J];納米技術(shù)與精密工程;2011年03期
6 方尼中;高國偉;;基于MEMS傳感器的胎兒心率檢測(cè)儀[J];傳感器世界;2006年03期
7 黃軍輝;楊旭志;陳述官;廖中文;;MEMS傳感器技術(shù)在汽車上的應(yīng)用研究與展望[J];農(nóng)業(yè)裝備與車輛工程;2010年09期
8 劉洋;;多軸與集成處理能力成為傳感器趨勢(shì)[J];電子設(shè)計(jì)技術(shù);2010年12期
9 孫圣和;;現(xiàn)代傳感器發(fā)展方向[J];電子測(cè)量與儀器學(xué)報(bào);2009年01期
10 孫圣和;;現(xiàn)代傳感器發(fā)展方向(續(xù))[J];電子測(cè)量與儀器學(xué)報(bào);2009年02期
相關(guān)會(huì)議論文 前1條
1 張福星;朱榮;劉旭東;劉鵬;熊威;周兆英;;基于MEMS技術(shù)的微型飛行器測(cè)控系統(tǒng)研究[A];2008中國儀器儀表與測(cè)控技術(shù)進(jìn)展大會(huì)論文集(Ⅲ)[C];2008年
相關(guān)碩士學(xué)位論文 前10條
1 楊輝;基于MEMS傳感器的高精度行人導(dǎo)航算法研究[D];廈門大學(xué);2014年
2 趙磊;汽車發(fā)動(dòng)機(jī)進(jìn)氣歧管壓力傳感器關(guān)鍵技術(shù)的研究[D];哈爾濱理工大學(xué);2009年
3 李哲;基于MEMS傳感器技術(shù)的數(shù)字式傾角儀的研究[D];天津大學(xué);2008年
4 龔勇;基于多傳感器節(jié)點(diǎn)的人體動(dòng)作捕獲系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2013年
5 戴習(xí)兵;基于FPGA的衛(wèi)星天線機(jī)載“動(dòng)中通”傾角測(cè)量的分析與設(shè)計(jì)[D];南京郵電大學(xué);2013年
6 孫代平;一種危險(xiǎn)化學(xué)品罐箱/槽車的實(shí)時(shí)監(jiān)測(cè)系統(tǒng)[D];大連理工大學(xué);2006年
7 汪振國;捷聯(lián)導(dǎo)航計(jì)算機(jī)的數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)[D];哈爾濱工程大學(xué);2013年
8 任東旭;光纖微傳感器及其關(guān)鍵技術(shù)的研究[D];安徽大學(xué);2012年
9 靳振宇;基于ZigBee技術(shù)的管道位移檢測(cè)系統(tǒng)設(shè)計(jì)[D];昆明理工大學(xué);2013年
10 韓濤;四傾轉(zhuǎn)旋翼機(jī)直升機(jī)模式飛行控制系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):2450642
本文鏈接:http://sikaile.net/kejilunwen/wltx/2450642.html