高頻地波雷達中斷信號恢復方法研究
發(fā)布時間:2019-03-22 17:05
【摘要】:信號中斷是造成高頻地波雷達回波譜信噪比下降的主要原因之一.在傳統(tǒng)的中斷信號恢復方法-自回歸(Autoregressive,AR)模型的基礎上,提出了基于反向傳播(Back Propagation,BP)神經網絡的信號恢復方法.通過實測數(shù)據驗證了兩種方法的處理效果,結果表明:BP神經網絡的預測誤差小于AR模型的預測誤差,隨著預測點數(shù)的增加,誤差增長率小于AR模型,同時BP神經網絡恢復方法對海洋回波信號能量損失較小.
[Abstract]:Signal interruption is one of the main reasons for the decrease of signal-to-noise ratio (SNR) in the echo spectrum of HF ground wave radar. Based on the traditional interrupt signal recovery method-autoregressive (Autoregressive,AR) model, a signal recovery method based on back propagation (Back Propagation,BP) neural network is proposed. The results show that the prediction error of BP neural network is smaller than that of AR model, and the error growth rate is smaller than that of AR model with the increase of the number of prediction points. At the same time, the energy loss of ocean echo signal by BP neural network restoration method is small.
【作者單位】: 武漢大學電子信息學院;
【基金】:“十二五”863計劃(No.2012AA091701) 國家自然科學基金(No.60571065) 中央高;究蒲袠I(yè)務費專項資金(No.2012212020207)
【分類號】:TN958.93
[Abstract]:Signal interruption is one of the main reasons for the decrease of signal-to-noise ratio (SNR) in the echo spectrum of HF ground wave radar. Based on the traditional interrupt signal recovery method-autoregressive (Autoregressive,AR) model, a signal recovery method based on back propagation (Back Propagation,BP) neural network is proposed. The results show that the prediction error of BP neural network is smaller than that of AR model, and the error growth rate is smaller than that of AR model with the increase of the number of prediction points. At the same time, the energy loss of ocean echo signal by BP neural network restoration method is small.
【作者單位】: 武漢大學電子信息學院;
【基金】:“十二五”863計劃(No.2012AA091701) 國家自然科學基金(No.60571065) 中央高;究蒲袠I(yè)務費專項資金(No.2012212020207)
【分類號】:TN958.93
【參考文獻】
相關期刊論文 前6條
1 黃亮,文必洋,鄧巍;高頻地波雷達抑制瞬態(tài)干擾研究[J];電波科學學報;2004年02期
2 王世凱,焦培南,柳文,凡俊梅;利用人工神經網絡重構區(qū)域電離層臨界頻率分布[J];電波科學學報;2004年06期
3 吳雄斌;尹微;程豐;柯亨玉;;寬波束高頻雷達海洋回波的統(tǒng)計特性[J];電波科學學報;2006年03期
4 魏e,
本文編號:2445767
本文鏈接:http://sikaile.net/kejilunwen/wltx/2445767.html
最近更新
教材專著