基于數(shù)字鎖相環(huán)的低功耗時鐘發(fā)生器設(shè)計
[Abstract]:The concept of phase-locked loop (PLL) has been widely used in electronic and communication fields such as frequency synthesizer and clock data recovery circuit since it was proposed. However, the modern multimedia communication market is changing with each passing day, people put forward more stringent requirements for the design of PLL, which makes the design of PLL constantly face new challenges: on the one hand, for high frequency, The design requirements of high performance PLL, such as multi-bandwidth, are becoming more and more stringent. On the other hand, low cost and low power consumption have increasingly become the focus of modern multimedia communication development. Therefore, high performance, low-cost and low-power PLL design has become the focus of attention. In this context, this paper establishes the design direction of a digital phase-locked loop for clock generator, and to achieve low power consumption and digital design. Based on the phase-locked loop, this paper discusses the design of all-digital phase-locked loop, including numerical controlled oscillator, numerical control loop filter, numerical control frequency divider and phase discriminator. The design of numerical controlled oscillator is discussed in detail. A numerical control ring oscillator is designed by using CMOS electric basin logic and MOS varactor technology. In addition, the design of numerical control loop filter is focused on, and the design of numerical control loop filter is realized by using the classical filter structure of integral and proportional path. Aiming at the whole digital design direction, the all-digital phase-locked loop designed in this paper is only composed of MOS tubes and does not contain any passive devices, which is beneficial to saving chip area and reducing cost. In the aspect of low power consumption, this all-digital phase-locked loop uses frequency control word preset technology to speed up the establishment of phase-locked loop and reduce the locking time, thereby reducing the average power consumption of the all-digital phase-locked loop. In this paper, an all-digital phase-locked loop for clock generator is designed by using SMIC013 technology, and the flow sheet is carried out. The simulation results show that the output frequency range can reach 92-500 MHz, the jitter is about 42.2 ps-1 / 500MHz and the power consumption is about 0.33mW / 500MHz and 1.32mW at 92MHz / 500MHz, respectively. The simulation results show that the output frequency can reach 92-500MHz, the jitter is about 42.2 psps / 500MHz, and the power consumption is about 1.32mW when 92MHz is about 0.33mW / 500MHz. In addition, the chip is tested, and the data which is closer to the real performance are given.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.8
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 路程;張曉林;李鈾;;無線通信非線性失真仿真器的設(shè)計與實現(xiàn)[J];北京航空航天大學(xué)學(xué)報;2011年05期
2 徐國明;;CMOS超寬帶低噪聲放大器的設(shè)計[J];電子與封裝;2010年08期
3 徐國明;;基于0.18μm工藝CMOS超寬帶低噪聲放大器設(shè)計[J];電子與封裝;2011年04期
4 武文娟;陶煜;莊建東;李昕;;智能化5.8GHz雙向功率放大器的設(shè)計[J];電子產(chǎn)品世界;2011年11期
5 曹冰冰;;5.6GHz CMOS低噪聲放大器設(shè)計[J];電子技術(shù);2010年01期
6 王寧章;周長川;;2.4GHz 0.18μm CMOS低噪聲放大器分析與設(shè)計[J];電子技術(shù)應(yīng)用;2007年07期
7 簡科軍;馬成炎;龔敏;馬紹宇;;采用快速鎖定技術(shù)的Σ-ΔFractional-N PLL行為仿真[J];電子器件;2007年05期
8 李景峰;陸生禮;;電視調(diào)諧器中電阻負(fù)反饋結(jié)構(gòu)的寬帶低噪聲放大器設(shè)計[J];電子器件;2009年04期
9 周竹瑾;李寧;蘇彥鋒;任俊彥;;一種適用于GSM/WCDMA的中頻濾波器[J];固體電子學(xué)研究與進(jìn)展;2008年01期
10 廖奎旭;楊自強(qiáng);楊濤;;基于鎖相環(huán)的L波段頻率源設(shè)計與實現(xiàn)[J];電子產(chǎn)品世界;2012年07期
相關(guān)會議論文 前1條
1 吳巖磊;田力;郝彬;;射頻系統(tǒng)輸出端口保護(hù)設(shè)計[A];天津市電子學(xué)會2013年年會論文集[C];2013年
相關(guān)博士學(xué)位論文 前3條
1 楊自強(qiáng);Ka頻段接收機(jī)部件單元單片集成電路設(shè)計[D];電子科技大學(xué);2008年
2 肖華清;射頻接收前端關(guān)鍵元器件及系統(tǒng)集成研究[D];西南交通大學(xué);2012年
3 李文嘉;基于CMOS工藝的低功耗IR-UWB通信系統(tǒng)芯片研究與實現(xiàn)[D];中國科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 梁立明;RFID系統(tǒng)功率放大器的設(shè)計與實現(xiàn)[D];遼寧工程技術(shù)大學(xué);2009年
2 劉賽爾;X波段單片集成寬帶正交混頻器芯片設(shè)計[D];浙江大學(xué);2011年
3 左杜軍;10MHz~1GHz小步進(jìn)頻率源的設(shè)計[D];電子科技大學(xué);2011年
4 李曉磊;CMOS射頻有源集成混頻器分析與設(shè)計[D];電子科技大學(xué);2011年
5 胡澹;Ka波段諧波鏡像抑制混頻器MMIC設(shè)計[D];電子科技大學(xué);2011年
6 劉亞姣;2.4G高靈敏度接收機(jī)射頻前端設(shè)計與實現(xiàn)[D];電子科技大學(xué);2011年
7 胡海鵬;基于USB接口的射頻傳輸系統(tǒng)的設(shè)計與實現(xiàn)[D];西安電子科技大學(xué);2011年
8 馬拓;CMOS射頻功率檢測器的研究與設(shè)計[D];西安電子科技大學(xué);2011年
9 舒浩;新一代無線通信射頻收發(fā)機(jī)系統(tǒng)的研究和實現(xiàn)[D];西安電子科技大學(xué);2011年
10 段文博;基于軟件無線電的跳頻收發(fā)信機(jī)關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2011年
,本文編號:2428974
本文鏈接:http://sikaile.net/kejilunwen/wltx/2428974.html