MEMS陀螺儀隨機(jī)漂移誤差補(bǔ)償技術(shù)的研究
[Abstract]:Compared with other kinds of gyroscopes, MEMS (Micro Electromechanical System) gyroscopes have the advantages of small size, low power consumption, low cost, light weight, easy integration and large batch production. Because of the above advantages, MEMS gyroscope has been widely used in many civil fields, such as automobile navigation, automobile airbag tripping device, anti-jitter platform of camera equipment, robot attitude measurement system, electronic toy, etc. Virtual sense of the game and so on. In the military field, the future of weapon system, UAV and other reconnaissance equipment will inevitably develop towards digitalization, intelligence, miniaturization and high motorization. Therefore, MEMS gyroscope has great development potential and value. However, the measurement accuracy of MEMS gyroscope is relatively low, which has become the bottleneck of the development of micro navigation system, guidance and control system and other key technologies. There are two ways to solve this problem: first, the internal structure of the hardware is analyzed pertinently; Secondly, the problem of random drift error of MEMS gyroscopes is an important part of improving the measurement accuracy from the point of view of algorithm and software. In this paper, the static output noise characteristics of MEMS gyroscopes are studied from the software level, and the compensation technique of random drift error of MEMS gyroscopes is studied. In this paper, some performance indexes of MEMS gyroscope are introduced, the drift data acquisition system of MEMS gyroscope is built, and the noise characteristics of MEMS gyroscope are analyzed by Allan variance method. The non-stationary data from MEMS gyroscope were pretreated, and the singularity was removed by using Ray criterion, and the drift trend was fitted by stepwise regression method, which was transformed into stationary and zero mean random drift data. According to the criterion of autocorrelation coefficient ACF, partial correlation coefficient PCF,AIC and so on, the time series model and parameters are selected, and the Kalman filter method of linear discrete system based on autoregressive AR model is used to compensate the random drift of MEMS gyroscope. The results of MATLAB simulation and Allan variance calculation show that the proposed method can effectively suppress the drift error up to 50. Aiming at the deficiency of Kalman filtering method for linear discrete systems based on autoregressive AR model, the hybrid model method of AR and SVM (Support Vector Machine) support vector machine is applied. AR model is used to describe the linear part of the random drift data, and SVM support vector machine is used to process the nonlinear data. After normalization, phase space reconstruction, data training and data prediction verification, a series of steps, such as normalization, phase space reconstruction, data training and data prediction verification, are presented. The Allan variance and other performance indexes are calculated. The results show that the mixed model method of AR and SVM support vector machine can effectively suppress the drift error by more than 80%, compared with the Kalman filter method based on time series. It has better denoising effect.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN96
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛瑤;任勇峰;崔永俊;侯卓;;一種基于光學(xué)測(cè)角技術(shù)驗(yàn)證陀螺定向的方法[J];電子技術(shù)應(yīng)用;2009年05期
2 陳亮;黃玉美;林義忠;史恩秀;高峰;;陀螺儀角速度的檢測(cè)與處理[J];傳感器與微系統(tǒng);2006年04期
3 ;用原子陀螺儀測(cè)量微小轉(zhuǎn)動(dòng)[J];激光與光電子學(xué)進(jìn)展;1998年07期
4 暴飛虎;胡昌華;劉丙杰;張偉;張豪;;基于模糊分類-灰色馬爾可夫的陀螺儀漂移預(yù)測(cè)[J];系統(tǒng)工程與電子技術(shù);2007年08期
5 陳航科;張東升;盛曉超;王凱;;基于Kalman濾波算法的姿態(tài)傳感器信號(hào)融合技術(shù)研究[J];傳感器與微系統(tǒng);2013年12期
6 龍達(dá)峰;劉俊;張曉明;李杰;;基于橢球擬合的三軸陀螺儀快速標(biāo)定方法[J];儀器儀表學(xué)報(bào);2013年06期
7 應(yīng)科煒;吳文貢;湯達(dá)斌;胡洪平;馮勇建;;ADXRS角速度檢測(cè)陀螺儀原理及應(yīng)用[J];傳感器世界;2006年01期
8 李燕;;基于MEMS器件的飛行器導(dǎo)航控制系統(tǒng)研究與設(shè)計(jì)[J];電子測(cè)量技術(shù);2009年09期
9 陳偉;李旭;張為公;;基于時(shí)間序列分析的車載MEMS陀螺儀異常測(cè)量數(shù)據(jù)的辨識(shí)與修正(英文)[J];Journal of Southeast University(English Edition);2013年02期
10 彭孝東;陳瑜;李繼宇;閆國琦;張鐵民;;MEMS三軸數(shù)字陀螺儀標(biāo)定方法研究[J];傳感器與微系統(tǒng);2013年06期
相關(guān)博士學(xué)位論文 前3條
1 羅躍生;硅微型陀螺儀的力學(xué)分析和數(shù)學(xué)模型[D];哈爾濱工程大學(xué);2003年
2 任建新;大角速率動(dòng)調(diào)陀螺儀及其應(yīng)用研究[D];西北工業(yè)大學(xué);2001年
3 楊華波;慣性測(cè)量系統(tǒng)誤差標(biāo)定及分離技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 查穎;基于捷聯(lián)慣導(dǎo)系統(tǒng)的MEMS陀螺儀信號(hào)降噪[D];南京理工大學(xué);2015年
2 楊慶輝;制導(dǎo)火箭彈穩(wěn)定平臺(tái)中MEMS陀螺儀降噪技術(shù)研究[D];南京理工大學(xué);2015年
3 杜少鶴;MEMS陀螺儀組合系統(tǒng)及濾波算法設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2015年
4 段棟棟;高精度MEMS陀螺儀的濾波算法研究[D];電子科技大學(xué);2014年
5 武俊兵;基于MEMS陀螺儀的尋北定向關(guān)鍵技術(shù)研究及其系統(tǒng)實(shí)現(xiàn)[D];電子科技大學(xué);2015年
6 賈國鵬;基于MEMS陀螺儀的飛行器動(dòng)導(dǎo)數(shù)測(cè)試系統(tǒng)研究[D];重慶大學(xué);2015年
7 霍元正;MEMS陀螺儀隨機(jī)漂移誤差補(bǔ)償技術(shù)的研究[D];東南大學(xué);2015年
8 孫睿;用于靶機(jī)的小型機(jī)械垂直陀螺儀的研制[D];哈爾濱工業(yè)大學(xué);2008年
9 陳莉莉;基于體感技術(shù)的互動(dòng)游戲平臺(tái)研究與設(shè)計(jì)[D];北方工業(yè)大學(xué);2015年
10 馬玉可;一種微慣性跟蹤器的設(shè)計(jì)及其在增強(qiáng)現(xiàn)實(shí)中的應(yīng)用[D];電子科技大學(xué);2010年
,本文編號(hào):2421286
本文鏈接:http://sikaile.net/kejilunwen/wltx/2421286.html