人體通信在多節(jié)點(diǎn)生理信號(hào)采集傳輸系統(tǒng)中的應(yīng)用研究
[Abstract]:As wearable / implantable medical equipment information services become more and more practical, Wireless body-area network (Wireless Body Area Network WBAN) technology is widely used in information exchange between medical sensors at the proximal end of human body. WBAN continuously collects important physiological signals of human body, such as blood glucose, through intelligent sensor nodes attached to the proximal end of human body. Blood pressure and ECG were monitored in real time. Low power consumption, low radiation and high transmission efficiency have become important indicators of bulk area network transmission media. However, wireless radio frequency communication technology, including Bluetooth and Zigbee, not only has high power consumption, but also has the problems of electromagnetic interference and network security, which makes it not the best choice for wireless body area network applications. Current-coupled human communication (Intra-Body Communication IBC) uses human body as channel to share information between human proximal devices. Because the process frequency is very low and it is not affected by the surrounding environment, it overcomes the shortcomings of the wireless radio frequency communication technology, and has a wide application prospect in wireless body area network. This paper provides a feasible scheme for studying the application of current-coupled human communication in body-area network: analyzing the communication requirements and characteristics of multi-node physiological signal acquisition and transmission system, and studying the transmission characteristics of human body channel. The hardware characteristics of the transceiver are designed. Based on the existing MAC protocol, a multi-node physiological signal acquisition and transmission system is constructed in the body area network, and its performance is analyzed in a specific application scenario. Firstly, the characteristics and applications of wireless body area network, network topology, physical layer and MAC protocol standard, and the working mode of IEEE802.15.6 are analyzed. It provides a theoretical basis for the research of multi-node system. Secondly, the human forearm experiment is carried out in the range of 10k~500kHz frequency, and the channel attenuation characteristics and corresponding equalization measures are obtained, and the simulation model of human communication system is constructed. The error rate and constellation of human channel model before and after equalization under different modulation modes are analyzed and the modulation mode suitable for human communication is obtained. Thirdly, according to the characteristics of the equalizer model, the human communication transceiver is improved and the system nodes are designed based on the human channel simulation model. The basic functions of the node include: the transmission of data, the collection, storage and display of physiological signals. In order to solve the problem of power frequency interference and common ground, the circuit is supplied by dry battery. Finally, a multi-node physiological signal acquisition and transmission system is constructed, and the performance of the MAC protocol in a specific scenario is studied by combining the parameters of the human body channel and the hardware index of the system node. To sum up, the research on the characteristics of current-coupled human communication channel, the corresponding equalization measures and the hardware parameters of the node device provides the basis for the choice of modulation mode and communication frequency band of multi-node system. Low power consumption, low radiation and high security reflect the significant advantages of current-coupled human communication, and provide a useful exploration and attempt for the theoretical research and technical application of human body communication technology in multi-node physiological signal acquisition and transmission system.
【學(xué)位授予單位】:福州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN92
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 敖強(qiáng);;電生理信號(hào)的計(jì)算機(jī)分析[J];計(jì)算機(jī)應(yīng)用研究;1984年01期
2 孫衛(wèi)新;;心臟生理信號(hào)的計(jì)算機(jī)分析[J];國(guó)外醫(yī)學(xué)(生物醫(yī)學(xué)工程分冊(cè));1987年03期
3 李恬鑒,柳英芝;一類生理信號(hào)的采集、建模和辨識(shí)[J];控制理論與應(yīng)用;1992年01期
4 郝興偉,周衛(wèi)東;生理信號(hào)計(jì)算機(jī)分析與處理的研究[J];計(jì)算機(jī)研究與發(fā)展;1997年S1期
5 李曉媛;李忠文;呂文杰;;無(wú)線生理信號(hào)監(jiān)測(cè)系統(tǒng)的開(kāi)發(fā)設(shè)計(jì)[J];鄭州大學(xué)學(xué)報(bào)(工學(xué)版);2012年04期
6 陳波;劉冬梅;陳薇;;基于插值的準(zhǔn)周期電生理信號(hào)樣本構(gòu)建的研究[J];電子測(cè)量與儀器學(xué)報(bào);2013年12期
7 楊潔秋;王慧艷;;利用家用錄像機(jī)記錄生理信號(hào)[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1991年05期
8 楊小冬;何愛(ài)軍;周勇;寧新寶;;復(fù)雜生理信號(hào)的多重分形質(zhì)量指數(shù)譜分析[J];科學(xué)通報(bào);2010年19期
9 蘇逸飛;張永魁;;用于情緒識(shí)別的無(wú)線生理信號(hào)采集傳輸系統(tǒng)[J];電氣電子教學(xué)學(xué)報(bào);2009年05期
10 林岡;;用于生理信號(hào)的廉價(jià)多通道前置放大器[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1988年02期
相關(guān)會(huì)議論文 前3條
1 李偉博;吳效明;;基于EZ-USB FX2的生理信號(hào)采集接口技術(shù)[A];中國(guó)儀器儀表學(xué)會(huì)醫(yī)療儀器分會(huì)2010兩岸四地生物醫(yī)學(xué)工程學(xué)術(shù)年會(huì)論文集[C];2010年
2 李國(guó)麗;史利杰;胡存剛;張萍;詹月紅;;基于LabVIEW的生理信號(hào)處理研究[A];計(jì)算機(jī)技術(shù)與應(yīng)用進(jìn)展——全國(guó)第17屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2006年
3 平安;王志良;;基于生理信號(hào)的人機(jī)情感交互系統(tǒng)應(yīng)用研究綜述[A];2009中國(guó)控制與決策會(huì)議論文集(3)[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 記者 王怡;我研制出人造仿生電子皮膚[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前6條
1 曾彭;生理信號(hào)的多尺度復(fù)雜性研究[D];南京大學(xué);2015年
2 程靜;基本情感生理信號(hào)的非線性特征提取研究[D];西南大學(xué);2015年
3 溫萬(wàn)惠;基于生理信號(hào)的情感識(shí)別方法研究[D];西南大學(xué);2010年
4 黃丹飛;基于生理信號(hào)關(guān)聯(lián)分析的可組合多通道監(jiān)護(hù)系統(tǒng)的研究[D];長(zhǎng)春理工大學(xué);2011年
5 王嬈芬;過(guò)程控制操作員生理信號(hào)分析及功能狀態(tài)建模[D];華東理工大學(xué);2012年
6 楊照芳;心跳間期和皮膚電信號(hào)中的情感響應(yīng)模式研究[D];西南大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 王翔;防化兵實(shí)訓(xùn)中生理信號(hào)動(dòng)態(tài)監(jiān)測(cè)[D];江蘇大學(xué);2015年
2 何成;基于多生理信號(hào)的情緒識(shí)別方法研究[D];浙江大學(xué);2016年
3 吳灶全;基于統(tǒng)一平臺(tái)的系列多參數(shù)生理信號(hào)監(jiān)測(cè)儀的硬件開(kāi)發(fā)[D];浙江大學(xué);2016年
4 宋宇坤;基于Zigbee技術(shù)的生理信號(hào)監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)[D];河南理工大學(xué);2014年
5 李秀翔;人體通信在多節(jié)點(diǎn)生理信號(hào)采集傳輸系統(tǒng)中的應(yīng)用研究[D];福州大學(xué);2014年
6 劉月華;典型生理信號(hào)綜合測(cè)量及情緒識(shí)別研究[D];上海交通大學(xué);2011年
7 孫圣;織物化多生理信號(hào)檢測(cè)裝置的設(shè)計(jì)[D];電子科技大學(xué);2013年
8 侯永捷;面向壓力評(píng)估的多生理信號(hào)采集和分析系統(tǒng)設(shè)計(jì)[D];燕山大學(xué);2013年
9 李亭亭;運(yùn)動(dòng)員生理信號(hào)的采集和數(shù)據(jù)分析系統(tǒng)的研究[D];沈陽(yáng)工業(yè)大學(xué);2008年
10 孫洪央;基于多生理信號(hào)的壓力狀態(tài)下情緒識(shí)別方法研究[D];上海交通大學(xué);2013年
,本文編號(hào):2403627
本文鏈接:http://sikaile.net/kejilunwen/wltx/2403627.html