視頻監(jiān)控中基于iOS平臺(tái)的人臉檢測(cè)與識(shí)別
[Abstract]:IOS, the mobile operating system developed by Apple, is mainly used in iPhone phones, iPad tablets and so on. Now more and more people chat, surf the Internet, watch videos and so on the iOS platform. IPhone has become a necessary item for many people. Face and fingerprint are the same as iris, unique and hard to be duplicated, which is an important index of identity detection. Face detection and recognition can help video surveillance to achieve intelligent. Combined with the mobile Internet platform based on iOS, surveillance video can be transmitted to iPhone mobile phone or iPad tablet through wireless network, and real-time face detection and recognition can be carried out on mobile phone or tablet. It is convenient and quick as well as cost saving. The work of this paper mainly includes the following four aspects: (1) realize the transmission of surveillance video on iOS platform. Firstly, the video image is captured by the camera, then the video is encoded by Flash Media Live Encoder, and Flash Media Server is used as the server. The video stream is transmitted to iPhone by HLS (HTTP Live Stream) protocol and displayed. (2) the preprocessing of surveillance video is realized. In this paper, video preprocessing mainly includes video denoising, histogram equalization and white balance. Firstly, the morphological filter is used to eliminate the salt and pepper noise in the video. Then the histogram equalization is used to increase the contrast of the image, which is beneficial to face detection. Finally, the white balance of video is adjusted by perfect reflection method, which weakens the influence of illumination on face detection. The preprocessing is helpful to the accuracy of face detection and the speed of face detection. (3) face detection based on improved Adaboost algorithm is implemented. This paper analyzes and discusses the Adaboost based face detection algorithm proposed by Viola-Jones in 2004, and proposes three improvements to the Viola-Jones face detection algorithm under the iOS platform. Firstly, an improved Adaboost algorithm based on weight updating is proposed. Then an improved Adaboost algorithm based on query sub-window size is proposed. Finally, skin color detection is used to speed up face detection. (4) face recognition based on improved LBP algorithm is implemented. Firstly, Gabor transform is used to realize multi-scale and multi-direction feature extraction. Then the texture information is extracted by the improved LBP algorithm. Finally, vector projection and dimensionality reduction are realized by Fisherfaces algorithm, and the images are classified by cosine similarity. Experimental results show that the algorithm not only has good robustness to illumination, but also improves the speed and accuracy of face recognition. In general, this paper mainly realizes the face detection and recognition of surveillance video based on iOS platform. Firstly, we do a series of preprocessing to the surveillance video, and then we detect the face of the pre-processed video image. Finally, face recognition is realized on the basis of face detection. The experimental results show that the system improves the training speed of Adaboost classifier, reduces the frequency of face detection and reduces the energy consumption of the program. The algorithm of face recognition is improved to improve the robustness of illumination and the accuracy of face recognition.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN948.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林志陽;康耀紅;雷景生;;基于Adaboost的車標(biāo)定位方法[J];計(jì)算機(jī)工程;2008年11期
2 張磊;;基于AdaBoost的側(cè)面人臉、人耳檢測(cè)[J];科學(xué)大眾;2008年08期
3 付忠良;;關(guān)于AdaBoost有效性的分析[J];計(jì)算機(jī)研究與發(fā)展;2008年10期
4 張崗?fù)?楊全;;兩種Adaboost方法在人臉檢測(cè)中的比較研究[J];微計(jì)算機(jī)信息;2009年24期
5 嚴(yán)超;王元慶;李久雪;張兆揚(yáng);;AdaBoost分類問題的理論推導(dǎo)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
6 李印;;基于AdaBoost的行人檢測(cè)研究與實(shí)現(xiàn)[J];數(shù)字技術(shù)與應(yīng)用;2012年03期
7 蘇加強(qiáng);丁柳云;;基于R的監(jiān)督式AdaBoost異常值檢測(cè)應(yīng)用[J];淮海工學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年01期
8 張志勛;張磊;楊凡;;一種改進(jìn)的Adaboost人臉檢測(cè)方法[J];自動(dòng)化與儀器儀表;2013年06期
9 王海川,張立明;一種新的Adaboost快速訓(xùn)練算法[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2004年01期
10 趙江,徐魯安;基于AdaBoost算法的目標(biāo)檢測(cè)[J];計(jì)算機(jī)工程;2004年04期
相關(guān)會(huì)議論文 前10條
1 Wen Feng;;A Novel Lips Detection Method Combined Adaboost Algorithm and Camshift Algorithm[A];2012年計(jì)算機(jī)應(yīng)用與系統(tǒng)建模國(guó)際會(huì)議論文集[C];2012年
2 張超;苗振江;;基于AdaBoost的面部信息感知[A];第十三屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2007)論文集[C];2007年
3 郭翌;汪源源;;基于Adaboost算法的頸動(dòng)脈粥樣硬化判別方法[A];中國(guó)儀器儀表學(xué)會(huì)第十一屆青年學(xué)術(shù)會(huì)議論文集[C];2009年
4 張紅梅;高海華;王行愚;;抑制樣本噪聲的AdaBoost算法及其在入侵檢測(cè)中的應(yīng)用[A];2007年中國(guó)智能自動(dòng)化會(huì)議論文集[C];2007年
5 陸文聰;鈕冰;金雨歡;;基于AdaBoost算法的亞細(xì)胞位置預(yù)測(cè)[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)化學(xué)信息學(xué)與化學(xué)計(jì)量學(xué)分會(huì)場(chǎng)論文集[C];2008年
6 陳宏偉;劉建偉;費(fèi)向東;;一種半監(jiān)督環(huán)境下的Adaboost算法[A];2008'中國(guó)信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(二)[C];2008年
7 唐曉丹;苗振江;;基于AdaBoost和粒子濾波的目標(biāo)跟蹤[A];第十四屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
8 張彬;金連文;;基于AdaBoost的手寫體漢字相似字符識(shí)別[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
9 ;Using Skin Color and HAD-AdaBoost Algorithm for Face Detection in Color Images[A];Information Technology and Computer Science—Proceedings of 2012 National Conference on Information Technology and Computer Science[C];2012年
10 肖磊;李麗;肖佳文;;基于AdaBoost-SVM的上市公司信用風(fēng)險(xiǎn)評(píng)估[A];2012管理創(chuàng)新、智能科技與經(jīng)濟(jì)發(fā)展研討會(huì)論文集[C];2012年
相關(guān)博士學(xué)位論文 前4條
1 佟旭;基于復(fù)雜網(wǎng)絡(luò)理論的糖尿病腎病辨證建模研究[D];北京中醫(yī)藥大學(xué);2016年
2 劉沖;模擬電路故障診斷AdaBoost集成學(xué)習(xí)方法研究[D];大連海事大學(xué);2011年
3 張?zhí)珜?人眼注視點(diǎn)估計(jì)方法的研究[D];南開大學(xué);2013年
4 趙培英;基于智能計(jì)算的膜蛋白結(jié)構(gòu)與相互作用預(yù)測(cè)研究[D];東華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 皮麗琴;基于AdaBoost-GASVM算法和LDA主題模型的短文本分類研究[D];華南理工大學(xué);2015年
2 孫斌;一種基于Adaboost的實(shí)時(shí)行人檢測(cè)算法[D];華南理工大學(xué);2015年
3 蔡澤彬;基于視頻分析的行人檢測(cè)及統(tǒng)計(jì)方法研究[D];華南理工大學(xué);2015年
4 游晴;Adaboost人臉檢測(cè)算法研究及其在硬件平臺(tái)上的實(shí)現(xiàn)[D];昆明理工大學(xué);2015年
5 宋雨;基于視覺圖片的腦—機(jī)接口控制研究[D];天津理工大學(xué);2015年
6 林欣;基于改進(jìn)膚色模型的AdaBoost人臉檢測(cè)算法研究[D];陜西科技大學(xué);2015年
7 袁浩杰;Adaboost算法的并行化及其在目標(biāo)分類中的應(yīng)用[D];華南理工大學(xué);2015年
8 張恒;基于近紅外圖像的疲勞駕駛檢測(cè)研究與系統(tǒng)實(shí)現(xiàn)[D];長(zhǎng)安大學(xué);2015年
9 朱非易;基于不平衡學(xué)習(xí)的蛋白質(zhì)—維生素綁定位點(diǎn)預(yù)測(cè)研究[D];南京理工大學(xué);2015年
10 張?jiān)?一種基于AdaBoost的組合分類算法研究[D];四川師范大學(xué);2015年
,本文編號(hào):2402044
本文鏈接:http://sikaile.net/kejilunwen/wltx/2402044.html