低分辨率交通視頻中運(yùn)動(dòng)物體識(shí)別算法研究
[Abstract]:With the development of computer technology, video technology and image processing technology, moving object recognition technology based on image processing method is more and more used in intelligent video surveillance system. Compared with the traditional recognition methods, the image processing method is paid more and more attention by researchers and practical engineers because it does not need to add external equipment, the overall cost of the system is relatively low, the expansibility is strong and so on. Traffic video surveillance is an important application field of intelligent video surveillance. Traffic video has many characteristics, such as low video resolution, complex background of moving objects, changeable meteorological conditions, large range of light changes and so on. In this paper, the existing methods of moving object detection, tracking and classification, especially based on video image processing, are investigated, and the applicable scenes, advantages and disadvantages of these methods are analyzed. And a moving object recognition algorithm based on multi-feature fusion and multi-frame fusion is proposed for the actual application scene of this paper, which is low resolution traffic video image. In this paper, the segmentation method of moving object is studied firstly, and the moving object is extracted by using background difference method by establishing a suitable background model for traffic video. Morphological processing is used to remove background noise, and a shadow removal method based on region growth is proposed to obtain more accurate moving objects. Then, the geometric features and motion features of moving objects are extracted, and then the features of moving objects are fused based on support vector machine and cascade classifier, respectively, and the single frame decision information of moving objects is obtained. Finally, the decision information of multiple frames in the video sequence is fused to complete the recognition of moving objects and the final classification information is obtained. The motion object recognition algorithm based on multi-feature fusion and multi-frame fusion presented in this paper has been proved by experiments that it can recognize moving objects well in the application scene of actual low-resolution traffic video, and the computational complexity is low. It can meet the need of real-time traffic video processing. After completing the algorithm design, this paper describes the construction of intelligent transportation video surveillance system, and briefly discusses the principle of the system, processing process and implementation scheme.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN948.6;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聞帆;屈楨深;閆紀(jì)紅;;集成多特征信息的運(yùn)動(dòng)陰影檢測[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2011年05期
2 魏偉波;芮筱亭;;圖像邊緣檢測方法研究[J];計(jì)算機(jī)工程與應(yīng)用;2006年30期
3 陳柏生;陳鍛生;;基于歸一化rgb彩色模型的運(yùn)動(dòng)陰影檢測[J];計(jì)算機(jī)應(yīng)用;2006年08期
4 盛能;王慧;劉泓;;混合交通流中的自行車識(shí)別及參數(shù)提取[J];計(jì)算機(jī)應(yīng)用研究;2010年05期
5 趙來剛;陳道炯;;一種基于Sobel算子的新型邊緣提取技術(shù)[J];機(jī)械與電子;2011年02期
6 張嘉;梁茵;;論我國城市道路建設(shè)與規(guī)劃管理問題[J];四川建筑;2006年04期
7 余孟澤;劉正熙;駱鍵;楊丹;;融合紋理特征和陰影屬性的陰影檢測方法[J];計(jì)算機(jī)工程與設(shè)計(jì);2011年10期
8 李子龍;劉偉銘;;基于組合特征和HSI顏色空間的陰影檢測[J];微電子學(xué)與計(jì)算機(jī);2011年03期
9 高嵐;董慧穎;蘭利寶;;自適應(yīng)背景下運(yùn)動(dòng)目標(biāo)陰影檢測算法研究[J];現(xiàn)代電子技術(shù);2008年06期
10 ;中國安防行業(yè)“十二五”(2011~2015年)發(fā)展規(guī)劃[J];中國安防;2011年03期
相關(guān)博士學(xué)位論文 前2條
1 李峰;智能視頻監(jiān)控系統(tǒng)中的行人運(yùn)動(dòng)分析研究[D];中國科學(xué)技術(shù)大學(xué);2011年
2 陳功;魯棒的智能視頻監(jiān)控方法研究[D];中國科學(xué)技術(shù)大學(xué);2008年
,本文編號(hào):2397015
本文鏈接:http://sikaile.net/kejilunwen/wltx/2397015.html