基于一維距離像的彈道目標(biāo)中段微動(dòng)特征提取
[Abstract]:Ballistic missile target recognition technology is an important research content of ballistic missile defense (BMD) system. Accurately identifying warhead target from attack target group is the premise of successful missile interception. The longest flight time in the middle of ballistic missile is the key stage of real and false warhead identification. The high-resolution one-dimensional range profile (HRRP) sequence of a target in the middle of a trajectory contains the fretting characteristics of the target, which can be used to effectively distinguish the warhead from the decoy. On the basis of analyzing the fretting characteristics of missile target, the fretting characteristic parameters of the missile target are extracted from three different ways based on the HRRP sequence of the mid-ballistic target. The main research contents are as follows: 1. The fretting model of the target in the middle part of the trajectory is established, including the precession of the pyramidal warhead, the nutation and the swinging and rolling of the pyramidal decoy. Then, by analyzing the fretting characteristics of the ballistic target, the expression of radar microDoppler in different fretting states is derived. By comparing the differences of micro-Doppler in various fretting states, the validity and feasibility of fretting feature in distinguishing warhead from decoy are verified. 2. The method of fretting parameter estimation based on two-dimensional graph detection is studied. On the one hand, the estimation curve of the precession period of the target is obtained by the weighted accumulation of HRRP sequence, and the precession frequency of the target is estimated by using the MUSIC algorithm and the nonlinear least square Gauss-Newton method, respectively. On the other hand, based on the curve detection ability of generalized Radon transform (GRT), the precession angle of the target is estimated. Compared with the traditional RCS polynomial fitting method, the estimation accuracy is improved, and the physical structure of the target is not known in advance. Aiming at the shortcoming that the computational complexity of two-dimensional graph detection will increase greatly with the increase of the number and precision of the parameters of the detection curve, a method for estimating the fretting parameters of ballistic targets based on the RLOS fluctuation characteristic curve of each scattering point is studied. In this method, the RLOS fluctuation characteristic curve of each scattering point is extracted by point-track matching method. On the one hand, the precession frequency of the target is extracted from the frequency components contained in the RLOS fluctuation characteristic of the scattering point. On the other hand, by extracting the RLOS projection distance extremum of the scattering point at the vertex of the cone target and estimating the precession angle of the precession target in the middle part of the trajectory according to the geometric relation, the precession angle of the precession target in the middle part of the trajectory is estimated. The precession parameter estimation method based on scattering center position difference sequence is studied. In this method, the precession frequency and precession angle of the warhead are estimated by using the function relationship between the position difference sequence and the precession parameters of the RLOS scattering point and the cone vertex scattering point projection in the RLOS direction at the bottom edge of the cone warhead. Compared with the method of estimating precession angle by using the variation of radar line of sight angle in large time interval, the accuracy and stability of this method are improved.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TJ761.3;TN957.51
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 湯軍;孫偉;;彈道目標(biāo)跟蹤的自適應(yīng)多維分配相關(guān)算法[J];彈道學(xué)報(bào);2011年02期
2 楊有春;童寧寧;馮存前;賀澤維;賀思三;;彈道目標(biāo)中段平動(dòng)補(bǔ)償與微多普勒提取[J];宇航學(xué)報(bào);2011年10期
3 劉也;余安喜;朱炬波;唐歌實(shí);;彈道目標(biāo)實(shí)時(shí)跟蹤中的濾波方法綜述[J];宇航學(xué)報(bào);2013年11期
4 巫春玲;韓崇昭;;用于彈道目標(biāo)跟蹤的有限差分?jǐn)U展卡爾曼濾波算法[J];西安交通大學(xué)學(xué)報(bào);2008年02期
5 徐長(zhǎng)愛(ài);李尚生;殷勇;劉軍;;基于粒子濾波的彈道目標(biāo)跟蹤[J];電光與控制;2008年10期
6 饒彬;屈龍海;肖順平;王雪松;;基于時(shí)間序列分析的彈道目標(biāo)進(jìn)動(dòng)周期提取[J];電波科學(xué)學(xué)報(bào);2011年02期
7 雷騰;劉進(jìn)忙;李松;胡國(guó)平;;彈道目標(biāo)進(jìn)動(dòng)周期特征提取新方法[J];計(jì)算機(jī)工程與應(yīng)用;2013年01期
8 俞建國(guó);劉梅;包玖紅;姚璐;;基于星光測(cè)量天基傳感器實(shí)時(shí)定標(biāo)在彈道目標(biāo)跟蹤應(yīng)用[J];電子與信息學(xué)報(bào);2013年04期
9 王軍;彈道目標(biāo)空間反識(shí)別措施發(fā)展態(tài)勢(shì)淺析[J];系統(tǒng)工程與電子技術(shù);2002年07期
10 羅賢明;陳忠寬;劉捷;程陽(yáng);;彈道目標(biāo)RCS計(jì)算與分析[J];空軍雷達(dá)學(xué)院學(xué)報(bào);2011年05期
相關(guān)博士學(xué)位論文 前1條
1 劉也;彈道目標(biāo)實(shí)時(shí)跟蹤的穩(wěn)健高精度融合濾波方法[D];國(guó)防科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 楊建輝;基于一維距離像序列的彈道目標(biāo)微動(dòng)參數(shù)估計(jì)方法研究[D];電子科技大學(xué);2012年
2 周旋;彈道目標(biāo)軌道確定方法研究[D];西安電子科技大學(xué);2014年
3 施巖龍;非線(xiàn)性濾波技術(shù)在彈道目標(biāo)跟蹤中的應(yīng)用[D];南京理工大學(xué);2012年
4 袁仕繼;基于寬帶信息的中段彈道目標(biāo)特征提取方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
5 宗志偉;再入彈道目標(biāo)跟蹤與質(zhì)阻比識(shí)別方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
6 高銘江;彈道目標(biāo)運(yùn)動(dòng)參數(shù)估計(jì)方法研究及軟件設(shè)計(jì)[D];西安電子科技大學(xué);2014年
7 明達(dá);基于一維距離像的彈道目標(biāo)中段微動(dòng)特征提取[D];電子科技大學(xué);2014年
8 黃雙寧;彈道目標(biāo)信息處理技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號(hào):2396374
本文鏈接:http://sikaile.net/kejilunwen/wltx/2396374.html