靈活大容量的OFDM-PON若干關鍵技術研究
[Abstract]:With the increasing demand for bandwidth access, optical access network has entered the stage of rapid development. Access networks are moving towards higher rates, longer distances, more flexible bandwidth allocation, and more diversified service types. New access network technology, represented by orthogonal Frequency Division Multiplexing (OFDM-PON) passive Optical Network (OFDM-PON), has attracted more and more attention. OFDM-PON has strong anti-dispersion capability, higher spectral efficiency and more flexible bandwidth allocation. The expansibility and compatibility are stronger and so on, so it has important research value. However, there are still some key problems to be solved in OFDM-PON. For example, the technology of transmitting and receiving optical OFDM signal is relatively complex and the cost is high, the modulation efficiency of (PAPR), direct modulation laser (DML) is lower than that of (PAPR), direct modulation laser because of the large peak-to-average power of OFDM signal. The further improvement of access bandwidth is limited by the sampling rate of digital-to-analog conversion module (DAC/ADC), and the two-dimensional dynamic bandwidth allocation (DBA) scheme in time-frequency domain is not perfect, and so on. According to the above technical difficulties, this paper directly detects the polarization multiplexing (PDM). In OFDM-PON by uplink modulation. Two-dimensional DBA of bandwidth resources in time domain and frequency domain are studied. The main research work and innovation are as follows: 1). In order to improve the wavelength adaptation of OFDM- wavelength division multiplexing (WDM) PON, a colorless ONU scheme combining (RSOA) with OFDM modulation is designed. Simulation results show that the uplink bandwidth of colorless ONU based on RSOA can be increased from 2.5Gbit/s to 10Gbit / s when the transmission distance is 40km and the bit error rate (BER) is less than 10-6. 2) The high PAPR, of OFDM signals requires a large linear range of lasers, and the total energy consumption of ONU accounts for a large proportion of the access network energy consumption. Therefore, improving modulation efficiency and reducing laser energy consumption are important problems in OFDM-PON. In order to solve the above problems, an uplink energy saving modulation scheme combining asymmetric truncated optical orthogonal frequency division multiplexing (ACO-OFDM) with a data-free switching mechanism for ONU lasers is proposed. The scheme has the following two characteristics: (1) the ACO-OFDM signal is generated in the optical domain by using the biased DML at the threshold point, which reduces the difficulty and the cost of realizing the signal in the circuit; (2) when there is no uplink data, the laser is closed and the energy consumption is reduced. The simulation results show that the scheme can reduce the laser power and increase the modulation depth compared with the traditional OFDM-PON modulation method. When the transmission distance is 20 kmm, the transmission rate is 10 Gbit / s and the BER is 3.8 脳 10 ~ (-3) (forward coding error correction FEC threshold), the transmission power can be saved about 4.3 dB. 3) Considering that the bandwidth of OFDM-PON access is limited by the sampling rate of DAC/ADC, an unprotected downlink modulation scheme with (DSB)-PDM-DD-OFDM-PON is proposed. The simulation results show that the scheme does not need the protection interval between signal and carrier. In the case of 16Q AM modulation format, the access bandwidth can reach the 40Gbit/s level in the downlink only by DAC/ADC, with a sampling rate of 10GSa/s. After digital channel equalization, when the transmission distance is 20km, the BER is less than 3.8 脳 10-3 (FEC threshold). 4) In order to improve the bandwidth utilization of OFDM-PON, a two-dimensional DBA algorithm in time and frequency domain based on traffic pipeline polling (SPP) is proposed. The algorithm solves the problem of large granularity of resource allocation and channel idle time caused by TDM-PON algorithm moving directly to OFDM-PON. The simulation results show that compared with the existing sequential dynamic subcarrier allocation (SDSCA) algorithm of OFDM-PON and adaptive periodic interleaved polling (IPACT) DBA), the proposed algorithm can reduce bandwidth fragmentation and delay without packet dropping. Increase bandwidth utilization by 5% and 7%.
【學位授予單位】:北京郵電大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TN929.1
【相似文獻】
相關期刊論文 前10條
1 顏彪,許宗澤,周平;正交頻分復用原理及應用分析[J];淮陰師范學院學報(自然科學版);2003年02期
2 張冬梅;郝建強;徐友云;蔡躍明;;多業(yè)務正交頻分復用多址系統(tǒng)中的機會公平調(diào)度算法[J];上海交通大學學報;2006年09期
3 劉武;楊奇;;相干光正交頻分復用傳輸系統(tǒng)中的無導頻相位糾偏方法[J];光子學報;2011年12期
4 趙光玲,束鋒,吳樂南;基于多級碼編碼正交頻分復用的差分幅度相位調(diào)制[J];通信學報;2003年03期
5 虞華艷 ,毛德祥;基于正交頻分復用調(diào)制的低壓電力線高速數(shù)據(jù)通信[J];電子技術;2003年03期
6 陳少平,朱翠濤;一種適用于正交頻分復用通信系統(tǒng)的信道估計盲算法(英文)[J];中南民族大學學報(自然科學版);2004年01期
7 姚雪峰,周嘉農(nóng),宋玉宏,柯建偉;正交頻分復用前置編碼技術在寬帶電力線通信中的應用[J];電網(wǎng)技術;2004年18期
8 崔新瑞;張捷;于紅梅;;正交頻分復用中的符號同步研究[J];信息安全與通信保密;2008年06期
9 陳章淵;李巨浩;楊川川;;光正交頻分復用技術及其應用(1)[J];中興通訊技術;2011年04期
10 陳章淵;李巨浩;楊川川;;光正交頻分復用技術及其應用(3)[J];中興通訊技術;2011年06期
相關會議論文 前10條
1 朱月秀;林野;;正交頻分復用技術及應用研究[A];浙江省電子學會第七次會員代表大會暨2007學術年會論文集[C];2007年
2 束鋒;趙光玲;吳樂南;;正交頻分復用通信系統(tǒng)的聯(lián)合同步算法[A];第十屆全國信號處理學術年會(CCSP-2001)論文集[C];2001年
3 胡正群;施滸立;裴軍;杜曉輝;;無線通信系統(tǒng)中的OFDM技術[A];中國電子學會電子機械工程分會2009年機械電子學學術會議論文集[C];2009年
4 陳春朋;胡啟梁;孫艷華;吳強;張延華;;T-DMB系統(tǒng)的C語言仿真[A];中國通信學會第五屆學術年會論文集[C];2008年
5 高建勤;熊淑華;;正交頻分復用(OFDM)原理及其實現(xiàn)[A];四川省通信學會二零零四年學術年會論文集(二)[C];2004年
6 李昕;;OFDM(正交頻分復用)在移動通信中的應用[A];2004’中國通信學會無線及移動通信委員會學術年會論文集[C];2004年
7 馬延;;探討O-OFDM系統(tǒng)應用技術[A];2013年7月建筑科技與管理學術交流會論文集[C];2013年
8 王昕;丁國華;;OFDM系統(tǒng)中的關鍵技術[A];江蘇省通信學會2004年學術年會論文集[C];2004年
9 王昕;張正喜;;基于802.16a的OFDM同步技術及DSP實現(xiàn)[A];江蘇省通信學會2004年學術年會論文集[C];2004年
10 孫浩;智慧川;;基于Simulink的OFDM系統(tǒng)仿真與性能分析[A];2009年全國無線電應用與管理學術會議論文集[C];2009年
相關重要報紙文章 前1條
1 唐偉;時域同步正交頻分復用數(shù)字傳輸技術成功[N];科技日報;2006年
相關博士學位論文 前6條
1 汪俊芳;基于正交頻分復用的自適應技術研究[D];華中科技大學;2006年
2 王東;基于光正交頻分復用的光與無線融合接入技術研究[D];北京郵電大學;2013年
3 雷誠;高效靈活的正交頻分復用無源光網(wǎng)絡技術的研究[D];清華大學;2014年
4 李科;差分OFDM系統(tǒng)與MIMO系統(tǒng)關鍵技術研究[D];天津大學;2011年
5 劉卓;靈活大容量的OFDM-PON若干關鍵技術研究[D];北京郵電大學;2014年
6 胡e,
本文編號:2393032
本文鏈接:http://sikaile.net/kejilunwen/wltx/2393032.html