激光雷達(dá)動(dòng)態(tài)目標(biāo)跟蹤系統(tǒng)光學(xué)設(shè)計(jì)
[Abstract]:Lidar is a kind of radar with laser as emitter and carrier frequency, which has the advantages of short wavelength, high beam quality and strong directivity. Its frequency is three to five orders of magnitude higher than that of microwave radar. Because of the good directivity, monochromatic and coherence of the laser, the lidar has higher angular resolution, range and velocity resolution than the microwave radar, and the lidar has strong anti-jamming ability, small volume and light mass. As an imaging radar, it can obtain multiple images of multiple targets. In addition, the lidar has the characteristics of high resolution, strong anti-jamming ability, 3D imaging and so on. The lidar has the characteristics of high resolution, strong anti-jamming ability, three-dimensional imaging and so on. It has been widely used in civil and military technical equipment, and it will have an important and far-reaching impact on industrial high technology, modern agriculture and social development. In this paper, the electronic compass, laser rangefinder, observation telescope and turntable of lidar are selected and introduced. Applying MATLAB to different laser wavelengths, zenith angles, initial beam diameters and the aperture of optical systems, the beam propagation caused by atmospheric attenuation and atmospheric turbulence effect is affected. The mathematical model of light beam cheap and intensity scintillation is established, and the compensation method is obtained by theoretical analysis. The components of adaptive optical system, the types of wavefront sensors, the algorithm of wavefront curvature, the principle of wavefront controller, the composition of wavefront corrector and the correction method are studied. In the end of this paper, the receiving system of lidar telescope is mainly studied. Based on the principle of simple structure and low cost, Casegren is designed as an optical receiving system of reflecting telescope under the premise of satisfying the requirements of the system.
【學(xué)位授予單位】:長(zhǎng)春理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董偉東;任干;馬龍;;盾構(gòu)機(jī)激光導(dǎo)向系統(tǒng)原理[J];測(cè)繪工程;2005年04期
2 郭勁;軍用激光系統(tǒng)對(duì)準(zhǔn)誤差推導(dǎo)[J];光機(jī)電信息;1998年03期
3 龐春穎;張濤;;激光主動(dòng)成像系統(tǒng)信噪比模型的研究[J];光學(xué)精密工程;2008年02期
4 蔡喜平,趙遠(yuǎn),黃建明,韓權(quán),丁麗;成像激光雷達(dá)系統(tǒng)性能的研究[J];光學(xué)技術(shù);2001年01期
5 吳兆喜;黃元慶;;基于光學(xué)原理的三維形貌測(cè)量技術(shù)研究[J];光學(xué)技術(shù);2006年S1期
6 張輝;張麗艷;王宏濤;陳鑒富;;基于瞬時(shí)隨機(jī)光照的曲面測(cè)量(英文)[J];Chinese Journal of Aeronautics;2009年03期
7 倪樹(shù)新,李一飛;軍用激光雷達(dá)的發(fā)展趨勢(shì)[J];紅外與激光工程;2003年02期
8 王宮;鐘約先;袁朝龍;馬揚(yáng)飚;李仁舉;;大面積形體三維測(cè)量數(shù)據(jù)拼接技術(shù)的研究[J];機(jī)械設(shè)計(jì)與制造;2007年09期
9 邾繼貴;王大為;任同群;葉聲華;;基于單次成像的三維形貌拼接技術(shù)[J];機(jī)械工程學(xué)報(bào);2007年06期
10 張冬生,楊耀權(quán),何曉燕,楊勇;煤場(chǎng)體積測(cè)量中三維模型的建立[J];計(jì)算機(jī)測(cè)量與控制;2003年03期
相關(guān)博士學(xué)位論文 前1條
1 陳純毅;無(wú)線光通信中的大氣影響機(jī)理及抑制技術(shù)研究[D];長(zhǎng)春理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前5條
1 劉國(guó)光;基于方波的相位式激光測(cè)距系統(tǒng)的研究[D];浙江大學(xué);2004年
2 張樂(lè);激光雷達(dá)發(fā)射和接收光學(xué)系統(tǒng)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年
3 卿慧玲;基于激光雷達(dá)數(shù)據(jù)的三維重建系統(tǒng)的研究與設(shè)計(jì)[D];中南大學(xué);2005年
4 張濤;基于MSP430的相位式激光測(cè)距儀的研究[D];電子科技大學(xué);2006年
5 曹光磊;基于GPS/INS高精度導(dǎo)航技術(shù)的研究[D];山東科技大學(xué);2009年
,本文編號(hào):2390944
本文鏈接:http://sikaile.net/kejilunwen/wltx/2390944.html