旋轉(zhuǎn)機(jī)械振動信號特性提取技術(shù)研究
發(fā)布時間:2018-11-28 19:35
【摘要】:旋轉(zhuǎn)機(jī)械設(shè)備在工作時的振動參數(shù)信號,特別在設(shè)備存在故障的條件下,絕大多數(shù)都是非平穩(wěn)信號,其信號特征中頻率是隨時間而變化的,如果只在時域或頻域中分析是遠(yuǎn)遠(yuǎn)是不夠的,需掌握非平穩(wěn)信號在頻率—時間尺度中幅值或能量分布情況。 故障特征提取過程是旋轉(zhuǎn)機(jī)械故障診斷中的最關(guān)鍵且重要的問題,考慮旋轉(zhuǎn)機(jī)械系統(tǒng)非平穩(wěn)信號特征,對比其他時頻分析方法,本文對現(xiàn)今非平穩(wěn)信號故障特征提取方法研究熱點—基于希爾伯特黃變換時頻分析方法進(jìn)行了深入的研究,總結(jié)經(jīng)驗?zāi)J椒纸獾乃惴ù嬖诙它c效應(yīng)和模態(tài)混疊的問題。針對旋轉(zhuǎn)機(jī)械現(xiàn)場信號往往參雜大量隨機(jī)噪聲和脈沖干擾問題,對奇異值分解和形態(tài)濾波理論進(jìn)行研究,結(jié)合奇異值分解可有效消除隨機(jī)噪聲和形態(tài)濾波能較好抑制脈沖干擾特點,提出了奇異形態(tài)濾波去噪方法,該方法可有效消除現(xiàn)場測量中參雜的隨機(jī)噪聲和脈沖干擾,避免經(jīng)驗分解的模態(tài)混疊現(xiàn)象。針對經(jīng)驗?zāi)J椒纸庠趯嶋H使用中存在端點效應(yīng)和模態(tài)混疊等問題,提出了適用于旋轉(zhuǎn)機(jī)械非平穩(wěn)信號的微弱故障特征提取方法—集總極值域均值分解算法,該方法可有效解決經(jīng)驗?zāi)J椒纸馑惴ǖ木窒扌浴?最后,采用QPZZ-II旋轉(zhuǎn)機(jī)械振動故障模擬實驗平臺,模擬滾動軸承故障形式,分別模擬滾動軸承的外圈損失故障、內(nèi)圈損傷故障和滾動體損傷故障進(jìn)行,,對本文提出的方法進(jìn)行試驗驗證,試驗結(jié)果表明,本文方法對強(qiáng)噪聲非平穩(wěn)振動信號能夠有效提取出故障特征頻率。
[Abstract]:The vibration parameter signals of rotating machinery and equipment, especially under the condition of equipment failure, are mostly non-stationary signals, and the frequency of the signals is changed with time. If it is not enough to analyze only in time domain or frequency domain, it is necessary to master the amplitude or energy distribution of non-stationary signal in frequency-time scale. Fault feature extraction is the most critical and important problem in rotating machinery fault diagnosis. Considering the non-stationary signal characteristics of rotating machinery system, compared with other time-frequency analysis methods, fault feature extraction process is the most important problem in rotating machinery fault diagnosis. In this paper, the current research focus of fault feature extraction for non-stationary signals, time-frequency analysis method based on Hilbert-Huang transform, is deeply studied, and the problem of endpoint effect and modal aliasing in empirical mode decomposition algorithm is summarized. The singular value decomposition (SVD) and morphological filtering theory are studied to solve the problem of random noise and pulse interference in rotating machinery field signals. Combined with singular value decomposition (SVD) can effectively eliminate random noise and morphological filter can better suppress the characteristics of pulse interference, a singular morphological filter denoising method is proposed, which can effectively eliminate random noise and pulse interference in field measurement. The mode aliasing phenomenon of empirical decomposition is avoided. In order to solve the problem of endpoint effect and modal aliasing in practical application of empirical mode decomposition, a new method for extracting weak fault feature of non-stationary signals of rotating machinery, called lumped Polar mean decomposition algorithm, is proposed. This method can effectively solve the limitation of empirical mode decomposition algorithm. Finally, QPZZ-II rotating machinery vibration simulation experiment platform is used to simulate the fault form of rolling bearing, which simulates the outer ring loss fault, inner ring damage fault and rolling body damage fault of rolling bearing, respectively. The experimental results show that the proposed method can extract the fault characteristic frequency effectively for the strong noise non-stationary vibration signal.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.7
本文編號:2364057
[Abstract]:The vibration parameter signals of rotating machinery and equipment, especially under the condition of equipment failure, are mostly non-stationary signals, and the frequency of the signals is changed with time. If it is not enough to analyze only in time domain or frequency domain, it is necessary to master the amplitude or energy distribution of non-stationary signal in frequency-time scale. Fault feature extraction is the most critical and important problem in rotating machinery fault diagnosis. Considering the non-stationary signal characteristics of rotating machinery system, compared with other time-frequency analysis methods, fault feature extraction process is the most important problem in rotating machinery fault diagnosis. In this paper, the current research focus of fault feature extraction for non-stationary signals, time-frequency analysis method based on Hilbert-Huang transform, is deeply studied, and the problem of endpoint effect and modal aliasing in empirical mode decomposition algorithm is summarized. The singular value decomposition (SVD) and morphological filtering theory are studied to solve the problem of random noise and pulse interference in rotating machinery field signals. Combined with singular value decomposition (SVD) can effectively eliminate random noise and morphological filter can better suppress the characteristics of pulse interference, a singular morphological filter denoising method is proposed, which can effectively eliminate random noise and pulse interference in field measurement. The mode aliasing phenomenon of empirical decomposition is avoided. In order to solve the problem of endpoint effect and modal aliasing in practical application of empirical mode decomposition, a new method for extracting weak fault feature of non-stationary signals of rotating machinery, called lumped Polar mean decomposition algorithm, is proposed. This method can effectively solve the limitation of empirical mode decomposition algorithm. Finally, QPZZ-II rotating machinery vibration simulation experiment platform is used to simulate the fault form of rolling bearing, which simulates the outer ring loss fault, inner ring damage fault and rolling body damage fault of rolling bearing, respectively. The experimental results show that the proposed method can extract the fault characteristic frequency effectively for the strong noise non-stationary vibration signal.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 桂中華,韓鳳琴;小波包-最大熵譜估計及其在水輪機(jī)故障診斷中的應(yīng)用[J];電力系統(tǒng)自動化;2004年02期
2 趙學(xué)智;葉邦彥;陳統(tǒng)堅;;矩陣構(gòu)造對奇異值分解信號處理效果的影響[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2008年09期
3 鄒紅星,戴瓊海,李衍達(dá),盧旭光;不含交叉項干擾且具有WVD聚集性的時頻分布之不存在性[J];中國科學(xué)E輯:技術(shù)科學(xué);2001年04期
4 鐘振茂,陳進(jìn),鐘平;盲源分離技術(shù)用于機(jī)械故障診斷的研究初探[J];機(jī)械科學(xué)與技術(shù);2002年02期
5 吳軍彪,陳進(jìn),伍星;基于盲源分離技術(shù)的故障特征信號分離方法[J];機(jī)械強(qiáng)度;2002年04期
6 胡愛軍;孫敬敬;向玲;;振動信號處理中數(shù)學(xué)形態(tài)濾波器頻率響應(yīng)特性研究[J];機(jī)械工程學(xué)報;2012年01期
本文編號:2364057
本文鏈接:http://sikaile.net/kejilunwen/wltx/2364057.html
最近更新
教材專著